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RELIABILITY AND SERVICE LIFE CONCEPTS FOR SONAR TRANSDUCER APPLICATIONS 

1.0 INTRODUCTION  AND   SUMMARY 

In recent  years,   the Navy  has  begun   to   Include  reliability  requirements  in 
procurement  specifications   for wet-end  sonar hardware.     For  the most   part  the 
requested  reliability evaluations  have   focused  on exponential  modeling and  the 
use  of  handbook methods originally developed  primarily   for electronics  systems. 
In  this  report we  examine  the  relevance of   this and other approaches.     Reliability 
concepts are  reviewed without  restricting their   scope   to  the  description  of  a 
single  class  of   operating  behavior.     The  discussion begins with  the   introduction 
of   the mathematical functions most  commonly used  in reliability descriptions. 
Modeling of   the constant,   increasing,  and decreasing hazard  rate situations 
is  discussed. 

Reliability  problems  tend  to have  strongly  statistical aspects.     This  leads 
us   to deal with  probability  ideas  and the  properties of  distributions.     Reliability 
and  service   life  concepts are  compared  and  contrasted  from  the  prediction view- 
point.    The  task of demonstrating reliability in as-built  equipment is also  dealt 
with.    The  report  calls  attention to  some  of   the  special problems  such as  limited 
production and  long intended   life associated with evaluating sonar  equipment 
reliability.     It  concludes with several   recommendations  directed   toward  the  syste- 
matic   improvement   of   sonar hardware. 

Most  of   the material  presented here was developed  in  the  open periodical 
literature and now has been refined and  cataloged in standard reliability  texts. 
However,  as a  distinct  autonomous discipline,   reliability  studies  are  only about 
35  years old.    There  seems   to be an important   fragmentation between advocates  of 
handbook-style  prediction and probabilistic  design practicioners.    This author 
views  the   two approaches  as complementary—each with  advantages and  limitations. 
An effort  is made   in this  report   to provide  the background  to permit  progress on 
sonar  problems   from both  points of  view.    Of necessity the  scope  of  this must be 
limited.    Hopefully,  however,  a  basis  for more  specific and detailed studies  is 
established. 

An attempt has been made  to present  the material   in sufficient detail  and 
rigorously enough  to serve  the  technical  needs  of managers  of   sonar upgrading and 
procurement  programs and  other workers  in  the  field.    Obviously  to  realize  the 
economic  benefits  that usually accompany well-structured reliability efforts, 
the  importance  of   this kind  of  pursuit cannot  be  overemphasized. 

Manuscript submitted June 26, 1981. 
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2.0 STANDARD MODELING CONCEPTS 

Discussions   of   reliability   topics   commonly  begin with  a  definition  of 
reliability.     There   is   pome  variety among  reliability definitions but  a  repre- 
sentative  example might  be:     Reliability   is   the  probability   that  an equipment 
will  satisfactorily   perform its   intended  function   for  a  specified  time when 
operated   in  the manner  and   for  the  purpose   intended.     This  statement  conveys  a 
general   impression   of  the  reliability concept   but   is   incomplete.     It  needs   to  be 
supported   by  specifications   of   the  nature  of   the  probability   statement,   what 
constitutes   satisfactory  equipment   performance,   mission  duration,  environmental 
exposures,   proper use,  etc.     It   is   possible   to  extend  the  reliability  definition 
to   Include  the   important  statements   of  qualification.     Clarity often  suffers 
when   this   is done.     In  contrast   the  statement  can  be  streamlined   to  simply, 
reliability  is  the   probability  of   success.     Again  communication on  the  subject 
involves  clarifying  a  number  of   related  circumstances. 

Measuring  reliability  involves  quantifying a   probability  statement.     Thus 
single  unit   reliability  Is  not  directly  observable   but must  be   inferred   from 
other   information  relating  to   failed  units  within  a   population.     The   Important 
relationships  are  developed  and  cataloged   in Section 2.1.     Sections  2.2,   2.3, 
and  2.4   deal  with  specific  examples   of  situations   exhibiting  constant,   increasing, 
and  decreasing hazard   rates. 

2.1 Some  Reliability  Functions  and  Interrelationships 

Several   important  reliability   functions  and  relationships  are  displayed  in 
Table  I.     The   first 6   line  entries  are  functions  commonly encountered   in  reliability 
theory.     Actually  the MTBF is  not  a   function  but  rather a  statistic   (measuring 
the  central   tendency of   f(t),   the  time-to-failure  probability  density   function). 
Probably  the MTBF acquires   its  status because  its  specification  in a  one-parameter 
model  (such  as   the  exponential   case)  completely characterizes  the  description. 
The   remaining  reliability  functions   all   depend  on  time   t  here   taken   to  represent 
operating  time   or  the age  of   the  component/equipment/system since manufacture  or 
installation. 

The  second  portion of  Table   I  gives a  number of   relationships  connecting 
the  various  reliability   functions.     Unreliability is defined   via Eq.   (2)  as 
the  cumulative  of   the  time-to-failure  distribution  function.     Unreliability 
and   reliabiity are  complementary   functions  via Eq.   (6).     Equations   (2)  and  (6) 
imply Eq.   (la).     Equation  (lb)   is derived  in Appendix A.     Differentiation of 
Eq.   (2)   under  the  integral  sign   leads   to Eq.   (3a)   while use   of Eq.   (6)   further 
implies Eq.   (3c).     Differentiation  of Eq.   (lb)   implies Eq.   (4a)   and  its  equivalent 
Eq.   (4b).     Use  of Eq.   (3c)   in Eq.   (4a)   leads   to Eq.   (3b).     Equation  (5a)  defines 
MTBF and  parts   integration  implies  Eq.   (5b)   as  an equivalent  statement.     Equation 
(7)  defines conditional   reliability as  a  function   of  age  t  at  the  start   of  a 
mission and  mission  duration T. 

The   reliability   functions  of Table  I   are  so  richly   interconnected  that 
specification  of  any one   of   the   functions  R(t),   U(t),   f(t),  or X(t)   implies   all 
the  other quantities  of   interest  including MTBF and  R(t,T).     In contrast,   speci- 
fying MTBF  alone  places  a  single  constraint  on  reliability  modeling  parameters 
and   implies  a  complete  description  only  in  the  case  of   a  single-parameter model. 

  



2.2 Random Hazard  Case—Exponential   Reliability 

In  order   to  better visualize   the  common  forms  of   reliability modeling,   let 
us  graphically relate   relia   ility and  expected  failure   times   to  the   underlying 
hazard  function  X(t).     Mary   systems  experience  a   fairly  stable minimum hazard 
rate  only after a   period   of  operation  that   separates  congenitally Inferior  units 
from  the  rest  of   the  population  of   similar  items.     The weak  units  are  referred   to 
as early   failures  and  the   time  domain   of   their  occurrence   is   termed  the   infant 
mortality  region.     A period  of   stable  hazard   rate   is  referred   to  as   the  random 
hazard   region.     Typically as damage   to  the   system accumulates   the  hazard   rate 
increases   rapidly,   signaling  entry   into  the wearout   phase.     Hazard  functions   for 
electronic  and  mechanical  components  are  sketched  in Fig.   1.     Electronic  com- 
ponents   tend   to  exhibit  a  pronounced   region where   the  hazard  rate   is  constant 
as  shown  in Fig.   la  (the  celebrated   "bathtub"   curve   of  reliability  studies). 
Wearout  as  suggested   in Fig.   lb,   tends   to  be more  prominent  in mechanical   systems. 
In  this   section   of   the   report,   we  consider  the  reliability   implications  of  a 
constant  hazard  rate.     Early and wearout   reliablity  are dealt  with  in  the  sections 
to  follow. 

The  region  of   stable  hazard  rate   is  referred  to as  the  random hazard   region 
because  a   failure   is   equally as   likely   to  occur  in any one   time  interval   as   in 
any other  such   interval  of   equal  duration.     Applying Eq.   (lb)   to  this  situation 
(X  =  const.)   yields   for  the   random hazard  reliability 

R(t)    =   e"^  . (8) 

Thus constant hazard rate implies exponential reliability. The time-to-failure 
probability density function is obtained by using Eq. (8) in Eqs. (3b) or (3c). 
Thus, 

f(t)    =    Xe (9) 

The function f(t) is itself an exponential (scaled as X) function.  Equations 
(8) and (9) follow from a constant hazard rate X.  For completeness we include the 
letter statement explicitly as 

A(t) = A. (10) 

Equations   (8),   (9),  and  (10)   characterize  what   is  usually referred   to as   the 
random  hazard  or exponential   reliability   situation.     Representative   random hazard 
reliability  functions  are   plotted  in Fig.   2.     In   practice  care must   be  exercised 
to make   sure   the  random hazard  description  is  used  appropriately.     This may mean 
eliminating early   failures  via  burn-in  techniques or  avoiding the wearout   region 
by  limiting  the   time   domain wherein Eqs.   (8)   through   (10)  are  used. 

2.3 Normally Distributed Times   to Failure—Wearout 

In  the  previous  section  it was convenient   to use constancy of   the hazard  func- 
tion as  a   poi-t  of  departure.     This corresponded   to a  static  reliability  situation 
in which  the vulnerability  of   the  system  or  component  of   interest  under applied 
stresses did  not   change with  time.     This  is  a   proper   description  of  many real- 
life  reliability   problems.     There  are  also  numerous  situations  wherein  the  perfor- 
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mance  attributes   of   the   item  of   interest  degrade with  time.     A wide  variety of 
wearout  phenomena  such  as  fatigue,   corrosion,   sputtering,  abrasion,   diffusion, 
etc.,   operate   to  populate   this  category.     In  general,   wearout   is  characterized   by 
the  systematic   loss  of   system  or  component  performance  due   to material   property 
changes or  outright   loss  of working substance.     The  changes may  be   induced  by 
applied   thermal   or mechanical   loads—sputtering,   diffusion,  and   fatigue  crack 
growth are   examples.     Degradation   processes  such  as corrosion  and   diffusion may 
also  proceed   independently of  applied   load.     Synergistic  effects  such as  stress 
corrosion  or corrosion   fatigue  also  occur. 

Loss  of   function   to wearout   translates   into  an  increasing  vunerability   to 
catastrophic   failure  in  service   under  normal   application   of   stress.     Thus,   the 
hazard   function  (probability   per unit   time  of  experiencing  a   failure)   is  an 
increasing function  as  damage   to  the   system or  component   of  interest  accumulates. 
The variety of  vearout  processes  and  variability of  loading  situations  often  render 
directly  characterizing the  shape   of   the  increasing hazard  function  inconvenient. 
Commonly  instead  one  acquires   time-to-failure   information and  proceeds   to an 
initial  specification  of  the  time-to-failure   probability density  function  f(t). 
This   is   typically a   peaked   function   that   increases  as  hardware vulnerability 
increases  and  decreases  as   significant   numbers  of  the  test   population are   lost   to 
failure.     When  f(t)   has  been characterized   the  corresponding   reliability  and 
hazard  functions  can  be  obtained  analytically or  numerically   from Eqs.   (la)  and 
(3b),   respectively.     A commonly  encountered  wearout   time-to-failure  distribution 
is   the Gaussian or  normal   distribution 

fN(t) (i/o   </2TT) exp if'-V 
2 " 

*UtJ (11) 

having  mean  value  or  position ut and spread  or   dispersion at.     In corrosion 
problems   the  times-to-failure   of   similar  units are   often  log normally  distributed 
(i.e.   the   logarithms  of   the   times-to-failure  are distributed  normally).     The   log 
normal   distribut ton  is 

LN (t)     =     (l/a       t^T) exp 
In t -u 

lnt 

'lnt 
(12) 

Examples of Eqs. (11) and (12) and their corresponding reliability and hazard 
functions are plotted in Figures 3 and 4. 

2.4 Infant  Mortality 

Infant mortality  refers   to   the  early   failure  of   substandard  hardware  items. 
These   units contain   flaws or  defects  not   properly representative   of   the entire 
population  of  nominally  similar  devices.     As  early   failures  occur weaker units 
are  removed   from service while more   rugged ones continue   to  function.     Thus,  as 
the  early  phase  progresses   the  probability  per unit   time  of  experiencing additional 
failures decreases.     Early  life   is  characterized  by a  decreasing hazard  rate,  a 
decreasing  time-to-failure density   function,   and  a  reliability   function that 
decreases more  rapidly  than an  exponential  function at   first  and  then more   slowly. 



Examples   of   the  infant mortality hazard,  reliability, and  time-to-failure 
probability  density   functions  are  presented   in Figure 5.     Quite  often early 
failure  studies  will  be  best  represented  by  time  axis displacements correspond- 
ing  to  failures  having  occurred  during manufacture  or transit or otherwise  prior 
to  the   initiation  of  actual  reliability  testing. 

Figure 5  refers  to a purely early  failure  situation.    That  is,  all units 
are  taken  to be  substandard  for   illustrative  purposes.     Normally a  test   popula- 
tion will contain both normal   Jevices  and  congenitally weak  units.    The  latter 
are  potential early  failure  ca  didates and  may be   largely  separated and prevented 
from causing subsequent  servic    problems by appropriate preliminary exercising or 
burn-in  procedures.     After  burn  in  the  remaining population  of  hardware  items  can 
be  characterized  as  exhibiting purely  random hazard,   purely wearout,   or perhaps 
combined  random and wearout  behavior.     The minimum  vulnerability   to  normal   load 
stresses  (force,   pressure,   voltage,  current,   temperature,  etc.)  occurs during the 
random hazard or  exponential  reliability  phase.     Thus,   for  critical  applications 
early  failures must be   systematically eliminated  (via burn  in or proof   testing, 
for  example).     Similarly,  the  impact   of  wearout must  be ameliorated  by  proper 
parts  selection,  adequate design measures,  and  through preventive maintenance. 

Early  failures  are most  conveniently represented using the Weibull   distribu- 
tion,  a   subject   that  is deferred   to Section 3.1. 
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3.0 FURTHER DISTRIBUTIONAL ASPECTS 

In  the  previous  sections  of   this   report  we  began  to  touch  upon  the  statistical 
aspects  of  reliability and  service   life   of  hardware.     Times-to-failure were   found 
to  be  distributed.     A few  important  distributions  are  in  common use   to  describe 
several   important   behavior  classes   (random,  early,  and wearout   failures).     There 
are many  other well  established  distributions   that  are  useful  from  time   to  time   in 
reliability work.     However,   for  the   present  purpose   it   is  necessary   to   limit  the 
scope  of  discussion here. 

Section 3.1   deals  with Weibull statistics,   a  generalization capable  of 
unifying the   descriptions  of   the  random hazard,   wearout,  and  infant  mortality 
situations.     Tn  Section 3.2  we   introduce   the   idea  that   reliability   itself  must  be 
distributed.     The  connection  of  distributed  time-to-failure   properties  with 
underlying system  complexity  and  functional   redundancy  is   touched  on  in Section 3.3 
and  its  subsections. 

3.1 A Generalized Description—Weibull Statistics 

In  1951  Weibull*  introduced a   probability density  function which has  proved 
to be  very comprehensive  and well suited  to  reliability and  life  studies.    There 
are both 2 and 3  parameter  versions  of  the Weibull  distribution.    The  three-param- 
eter  probability density   function  is 

'<'>"    ^)ß"1exp(-(-^)ß). (13) 

The  corresponding Weibull   reliability and hazard functions  are 

R(t)   =     exp(-(-^)ß) (14) 

and 

Xt>  =    f(^)6-1   . (15) 

The   allowed  ranges   of   the   parameters are: 

Y   <   t   <   °° 

—  OD     <      V     <     oo 

n > o 

ß > o . 



The   two-parameter Weibull   reliability  model  is obtained   from Eqs.   (13) 
through   (15)  by  setting  the   location  parameter Y  equal   to zero.     Equation  (15) 
represents   equally  well   decreasing,  constant,  or   increasing hazard   rate  situations 
as   the  parameter ß   takes values  less   than,  equal   to,  or greater   than one 
respectively.     Since ß   has  such a  dramatic   impact  on  the   character  or  functional 
shape  of   the Weibull  distribution,   it   is  referred   to as   the  shape   parameter. 
Weibull  shape  effects  are   illustrated  in Figure  6.     Changing  only  n  has   the   same 
visual  effect   on a  plot  of   the  distribution as  stretching  or  compressing  the 
abscissa  coordinate   scale  and  symmetrically compressing  or  stretching the  ordinate 
scale.     This  leaves   the  normalization  of  F.q.   (13)   unaffected.     Thus,   n   is  referred 
to as   the   scale   parameter   of   the Weibull   distribution. 

We  have   seen  that   the Weibull  distribution has  a  decreasing,   constant,   or 
increasing associated hazard  function  depending on  parameter   choices.     Another 
way  to  verify  the versatility  of   this model   is  to   look  at   limiting  forms  of   the 
Weibull   distribution  function  itself.     Reference  2 and  sources  referred   to  therein 
point  out   that   for 6=1,2,  and  3.313 Eq.   (13)   reduces  respectively  to   the  two- 
parameter  exponential   distribution,  the Rayleigh distribution,  and  approximately 
to   the  normal  distribution.     The  common one-parameter  exponential  distribution 
obtains  when ß   =   1  and y  = 0.     Equation  (13)   is  skewed   to  the  right   for  values  of 
3  up  to about 3.313 and skewed  to  the  left  for ß  greater  than 3.313.     In  the 
former  case  (ß   <  3.313)   it   is  likely  that  a  choice  can  be made  such  that  Eq.   (13) 
is  also  a  satisfactory  representation of   the   log  normal  distribution. 

The Weibull   distribution  is  very convenient   in  that  it   allows   the  same   formal 
reliability description  to  embrace  all  three   important  practical  situations. 
However,   infant mortality,  random failures,  and wearout  are  not  represented 
simultaneously by   the  same Weibull  distribution.     When more  than one  type  of 
failure mode   operates   in  a  group  of   items   of   interest,  the  group  is  referred  to 
as  a mixed  population.     The  reliability description of  mixed populations   is 
discussed  further  in Section  5.2.3.     Estimating the   parameters   of   the Weibull  or 
other  distributions   is dealt with  specifically  in Section 6.2. 

3.2 Distributed Reliability—Confidence Limits 

Reliability has been introduced as a quantity measuring the probability of 
successful operation of a given component or system under specified conditions. 
Reliability is completely specified as a deterministic function of time (and 
loading and strength parameters) via Eqs. (la) and (lb) if an appropriate time-to- 
failure probability density function f(t) or hazard function X(t) is supplied. 
We have no trouble reconciling the concept of deterministic reliability with the 
variability of success/failure outcomes when we actually operate equipment. 
Reliability is only the probability of success and not a guarantee of successful 
operation in some fraction of attempts made. 

The situation can be likened to the casting of dice.  If a die is formed 
symmetrically, we assign it an a priori probability of 1/6 of showing any one of 
the six faces when cast. Even If the die is fair (unloaded), however, this does 
not assure that in six throws each face will show a single time only.  But in a 
large number of throws the fractional exposure of each face of the die will 
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approach  1/6   for  a   fair  die.     If   the   die   Is  loaded,   different  occurrence   fractions 
for   the  six  faces will  be  obtained   in  this way.     We will  have measured  the  loading 
in  terms  of  the   unsymmetrical  a  posteriori   probabilities   of   showing the  six  die 
faces.     Whether  the  die   is   fair  or  not,   the  number  of   times a  given  face  shows  up 
in a  certain  number   of   throws  is  a   random  variable   subject   to  fluctuations   under 
a  repetition  of   the  test.     Thus,   the  best  one  can hope   to  do  is  to characterize 
the  situation  in  terms  of  observed  averages  and  some measure   of  the   scatter   of 
the data  used  to  form  them.     This  is  a distributional   description and  the 
probability of  showin    any  particular   die   face   is  distributed.     In  the  case   of   a 
fair  die   the  distributed  a posteriori   probability  will have  a  high  probability  of 
including the  a  priori  value.     If  the   die   is  loaded,   the   former will   likely exclude 
the   latter. 

How is  reliability   to  be  compared  and  contrasted with  the  casting  of  dice? 
First   of   all,  a  posteriori   probabilities  are measured  in  the   same way—by operatin 
the  equipment  and  counting  successes  and  failures  or  by casting  dice  and  similarly 
noting the  outcome.     Many dice   can  be  used  or  a  single   die   can  be   thrown  repeti- 
tively.     Similarly,  many  (identical)  equipments can be exercised or a single 
one  subject   to  appropriate  repair  between uses.     An   Important  contrast   is  that   in 
general   there  is  no suitable way   to  assign  an a priori   reliability.     Previous 
experience with  similar  equipment  constitutes  a  related  measurement  rather  than 
an  evaluation based  on  structural  arguments  and  advanced   independently  of  opera- 
tional   experience. 

At  the beginning of   this section we  noted  that  reliability  is  fully determined 
if   the  related  time-to-failure or hazard functions are  completely  specified.     One 
can invent  reliability models where  this  is  imagined  to  be  the case,   but  as a 
practical  matter  this  situation  does  not  occur.     In   practice  the   properties  of 
the continuous   functions   f(t)  or  X(t)   are  inferred  from a   limited  number of 
discrete  observations.     The  result   is  that  only a  statistically  distributed 
description of   the  parameters  of   these  functions  can be  specified.     The  derived 
reliability   function  is  also  distributed.     Similar  reliability conclusions  are 
drawn  directly  if  one   focuses  attention on  the  unfailed  fraction of  an equipment 
population as  a   function  of   time  rather   than  the   equivalent   indicators  (observed 
failure  times,   number  of   failures  in  intervals  of  equal  duration). 

In order   to  further  clarify  the  concept   of  distributed  reliability,   let  us 
pursue  a more   formal   line  of   reasoning.     To  be  specific  and   restrict   the  scope  of 
the  discussion   somewhat,  consider a  nonreplacement   test   of N   equipments  which  is 
terminated  at   the  occurrence  of   the   rth  observed  failure.     Each  of   the  r  failure 
times   tl,...|   tr  is  recorded.     Let  us  consider  further  for  the moment  that we 
have   some   independent assurance  that   the  equipments  under  test  are  identical  and 
exhibit  exponential  reliability.     (In nature   radioactive  or   fluorescent  atoms  of 
the  same kind meet   these   last   two   requirements—for manufactured  hardware,  however, 
this must  be  recognized as an  idealization.)    We   take   our  problem to   be   specifying 
the  parameter 6   of   the  one-parameter exponential   time-to-failure distribution 

f(t)   =    |e-t/9 (16) 



from the  available   set   of  observed   tj   (i   =   l,...,r).     Notice  Kq.   (16)   is  simply 
Eq.   (9)  written   in  terms  of  0   =   1/A  =  MTBF. 

On  the  basis  of  maximum   likelihood   theory   the  best  estimate  6  of   the   true 
MTBF  0   is   (see Appendix  10.C.1   of  Ref.   3,   for  example) 

=    I[   Jt4    +(N-r)tr] (17) 
1=1 

The estimator 6 is in fact a distributed random variable since application of 
Eq. (17) to more than one nominally identical experiments will yield different 
results.  Many such repetitions would produce an experimental determination of 
the distribution of estimators f(6).  Since we are dealing with a known time-to- 
failure distribution [Eq. (16)], this information can also be developed analytically. 
In the pioneering study in this area Epstein and Sobel^ have shown that the 
distribution of estimators based on observing r failures among N units drawn from 

an exponential population is 

f(9) =  (l/(r-l)!)(r/e)r(e)r-1exp(-re/6). (18) 

The  average  or  expected   value   of   9  is 

E(9) ef(e)de 
o 

n| = e. (19) 

Similarly 

E(e2) -   £±V. (20) 

The  variance   is 

os
?   =     E(92)   -   (E(6))        =  02/r. (21) 

And  the  coefficient   of  variation  is 

COV «V^e l//r (22) 

As an  example Eq.   (18)   is   plotted  in Fig.   7   for  the  case   r  =•= 10,  6   =1.     The 
cumulative  ot   Eq.   (18)   is also  shown  in Fig.   7   from which we see  for example   that 
the 90Z  two-sided confidence  statement  that  can be made with respect   to  the 
expected  range of 9   Is 

0.526   <   9  <   1.566 (23) 



Equation (23) states that if exponential units having true MTBF 9 are tested 
until 10 failures are observed, the estimator 0 will have a 90% probability of 
being in the indicated range.  Normally, however, the true 8 is unknown and we 
would like to reverse the philosophy of Kq. (23) to sharpen the description of 
6 as an estimator of 9. 

We turn again to the work of Epstein ai.J Robel^ who showed that the random 
vari able 

2r_e 
8 

(24) 

is X^ distributed with 2r degrees of freedom.  That is 

f(z) = (l/2r<r-l)!)(«r-l)e*/2 . (25) 

Using the variable transformation methods described in Chapter 5 of Ref. 5, 
Eqs.  (18) and (25) are seen to be trivially related.  Via reasoning along the 
same line (the process is amplified in Appendix B), one obtains the distribution 
of true MTBF values 9 compatible with a single observed estimate 9.  Thus 

f(9) = (l/r!0)(r9/9)r+1exp(-r9/9). (26) 

The origin moments of Eq. (26) of interest are 

E(9) = fe)§  =  U9 (27) 

and 

E(9?) * (r-U(r-2) • (28) 

The variance and coefficient of variation are 

,-252 

e    (r-1 
and 

(29) 

(30) 

Equation_(26)   together with  its  cumulative  is  plotted  for  the   particular  case 
r =  10,   9  = 0.9   in Fitf.  8.     The  cumulative  of  Eq.   (26)  can be  used  directly  to 
make  any desired  confidence  statement with  respect   to  the  ranging  of  Q  about  6 
for a given  r.     For example,   from Fig.  8  the 90%   two-sided  confidence  statement 
is 
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0.56   <   ri   <    1.65. (31) 

Or  since 6   = 0.9 an  equivalent   representation  is 

0.620    <    G    <    1.830   . (32) 

The  approach described  in  the   preceeding paragraph   is   awkward since  Eq.   (26) 
must  be   integrated  for  each   pair  of   experimental  parameters 0,  and  r.     Thus, 
standard  practice   involves   instead  the  combined use   of Rqs.   (24)  and  (25)   and 
available   tables  based  on   the X2   distribution.     The  probability   statement  on z 
at  a  confidence   level   of   l-ce  is 

lX(l-a/2), <    ^    <   x2 
2r    -       0       -      a/2,2r 

1-a. (33) 

An   equivalent  statement   providing the   two-sided  confidence   limits  on 0  at  the 
1-a  confidence   level   is 

L2  =    -^E!_    5    0    <     -J-^     "    V (34) 
Xa/2,2r X(l-a/2),2r 

a 
One-sided  confidence   limits  are   implied   by Eq.   (34)   under  the  replacement j * a 

(for L  or U  but  not  both  since   the  conjugate   limit moves  off   to ±°°). 

Since   there  is  a  one-to-one  correspondence  between MTBF  and   exponential 
reliability  via Eq.   (8),   and using Eq.   (34)   the  confidence   interval  for   the 
reliability  function may be  specified as 

-t/L,     „     0/Vv     „       -t/U, 
e 

J2     <     R(t)     <     e"wu2    . (35) 

Of course  the   full   distributional   character   of  the  reliability   function  can be 
displayed  by applying   the methods  of  Appendix  B  to Eq.   (26)  with  the  proviso 

This   yields 

f(R)    =    [l/(r-l)l)(r8/t)r(-lal)r"1l<,,/t"1>. (37) 

Equation  (37)   is  plotted  in Fig.   9   for  the  cases  r  =  10,   0   = 0.9  and  t  =0.1, 
0.2.     One  notices   that   the   reliability dispersion as well  as   its mean value   is 
time  dependent.    Another way of visualizing this situation  is displayed  in Fig. 
10 which  shows   the  time  dependence  of   the  50%   confidence  boundary and  80%   two- 
sided confidence   limits on reliability   for  the  example  being considered. 

In closing  this  section  let  us consider a practical  procurement  example. 
The Navy recognizes  that  perfection  of hardware   performance and its  specification 
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are  both  unattainable  on a   finite   budget.     Thus,   compromises   in  both areas  are 
commonplace   in deference   to   the  recognized statistical   character of   reliability. 
One might   require   that   the   reliability  of   some  equipment   for a  specified  time 
period  be  at   least  90%.     One might   further demand  sufficient   testing under actual 
service  conditions   to  support   this  statement  at   a 90%   level   of confidence.     The 
problem  is  a  standard  one  of   specifying  a  one-sided  confidence   level  and   limit. 
The  desired   lower,  one-sided  confidence   limit  on  the  reliability is 0.9 and the 
confidence   level   is 90%.     Combining Eqs.   (34)  and  (35)   specialized  to  this case 
yields 

R(t)     >     exp(-(t/2re)X^  2r). (38) 

Equation  (38)  can  be  rearranged   to  give   the minimum MTBF  estimator 8mln 

needed   to  satisfy  the  reliability  specification at  a  confidence   level  of   1-ct. 
Thus 

e   ,      =     5Li£I     . (39) 
2r(-lnR(t)) 

Equation  (39)   expresses   the minimum observed MTBF   [via   testing  per Eq.   (17)] 
needed   to  assure with  100(l-a)%  confidence  that   reliability  of  at   least R(t) 
is  achieved  by an  exponentially reliable  system  for   a mission  of duration  t. 
This  result  depends  on  the  number of   failures   r on which   the MTBF estimate  is 
based and hence  on  the  level   of  testing to which one  is  willing  to  commit.     Let 
us   return  to  the  specific  example  (1-cc)  = 0.9,   R(t)  = 0.9  and use Eq.   (39)   to 
plot   (l/t)6niln as  a   function  of observed  failures  r.     This  result  is  shown 
in Fig.   11.     Figure  11   includes  similar  results  for a  few other confidence 
levels  also.     One  can  see  generally  that   if   9  is  supported  by  5   to   10  observed 
failures   the   lower  confidence   limit  Ö^n must  be  roughly  15   times  the desired 
mission  duration   for 90%  reliability at  a 90   to 95%  confidence   level. 

3.3 A Components  Versus  System View 

As  consumers  and users  of   products we  usually  take  a  systems view of  relia- 
bility.     We  ask   "Is   the  car   running?" rather  than  inquiring separately about 
the  operational   health of   the  tires,   battery,   fuel  pump,   engine  seals,   hydraulic 
and  electrical  subsystems,  etc.     But  as  engineers,   scientists,  and  managers 
charged with   improving  sonar  transducers we  need  to  focus attention on  specific 
areas  where  constructive   changes would have  a  beneficial   impact.     We  tend  to 
think  of   systems  as  assemblages  of  components.     As we  shall see shortly,   this 
posture   probably relates more   to   trends   in  commercial  packaging than  distinctions 
relating  to  form and  function.     For example,  a  simple  square wave  oscillator might 
be  a   system  of   interest.     It   is assembled   from components  such as an  integrated 
circuit,   resistors,   capacitor,  battery,   switch,   printed  circuit  board,  etc.    The 
capacitor  is  a  component  because  it   is  purchased as a  separate  commodity   (No one 
buys   tin foil  and  paper and  rolls  his own capacitors  anymore.).     But  to  the 
manufacturer  of capacitors  this device  is  itself  a  system assembled  from a  variety 
of  more homogeneous materials.     Even  In  looking at  this  indenture  level we  have 
overlooked  the   processing steps  required   to convert  naturally occurring  raw 
materials   into  the  conductive   foils  and wires  and  insulating  films   that go  into 
capacitor  construction. 
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Similarly,  the   integrated  circuit   referred   to  is  purchased,   installed, 
consumed,  and   replaced  as  a  separate   item  (component).     But with  respect   to 
internal   form and  function  this device   is  a   system  of  high  architectural  complexity. 
Many  very carefully controlled  masking  and  metallurgical   processing  steps  are 
involved  in   its manufacture.     The   system is complicated  (and  inexpensive)  enough 
to  defy  practical   diagnostics  and   repair.     Systems  which are more  expensive   to 
repair  than  replace   tend  to receive modular   packaging and  be   treated  as   throw-away 
items.     Curiously   then  it   is  economics  and  not   structural   complexity  that  most 
strongly  influences  the  component  versus  system  distinctions  that we  normally 
draw.     An  automobile  oil   filter  is a   throw-away   item not   because   it   is  structurally 
simple  or  complex  but  because  it   is  easier  and   cheaper   to  replace   it   than   to 
clean and  evaluate  it  for  reuse. 

We  have   just   seen  that with  respect   to  form and  function commercial   components 
may  in  fact  be   exotic  microsystems.     Conversely many heroic  structures  have  a 
very  simple   functional  makeup.     Structurally,  a  highway   is  scarcely more   than a 
ribbon  of   aggregate material.     The members   of  a  bridge  or a  barge  are  more 
homogeneous  or  less  functionally diversified   than  a  simple  capacitor or  battery. 
Furthermore,   the   former are  considered   repairable while  the   latter are  not. 

Empirical   reliability  studies  tend  to attempt   to catalog  components-level 
experience   from which  systems-level   descriptions  are  built  by  superposition. 
Looking  at  dictionary definitions,   one  finds  "component"   referred   to as  a 
constituent   part  while "system"   means  an assemblage   of  such   parts.     One   perceives 
that  components are   to  be   thought  of  as  structurally  simple while  systems  are 
complex.     Often,   however,  the  reverse  is   true  as  we  have   seen.     We  shall  explore 
further  the   reliability   implications  of   this  structure dichotomy  in the  next   two 
sections   of   the   report. 

3.3.1    Complexity and Redundancy 

In the previous section we have begun to see that the simplicity or complexity 
of a fabricated item is not necessarily related to whether we regard the item to 
be a component, system, subsystem, etc.  Why do we wish to make such distinctions? 
This is because reliability is related to features of true form and function 
rather than to arbitrary packaging and assembly constraints.  The two important 
reliability classes of interest here—exponential and wearout—are primarily 
associated with functional nonredundancy and redundancy respectively.  Complex 
systems usually (but not always) exhibit little redundancy and are exponentially 
reliable.  Simple structures tend to have an excess of working material and so 
are functionally redundant in a way that leads to wearout reliability or a strongly 
peaked time-to~fallure distribution. 

Consider an ordinary steel tensile member.  This may be a modern marvel 
metallurgically.  But from a reliability standpoint it is homogeneous with many 
interatomic bonds sharing the applied load.  If the tensile member is conserva- 
tively designed, many bond failures or considerable loss of material (to abrasion, 
oxidation, corrosion, etc.) can occur before catastrophic failure results. This 
situation is in contrast to that exhibited by a complex system the operation of 
which depends on the simultaneous functioning of many subsystem-structures.  In 
the latter case, many failure modes whether they individually exhibit exponential 
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reliability or not contribute randomly to system unreliability.  As a result 
systems tend to be characterized by exponential or random hazard reliability.  In 
contrast redundant structures tend to exhibit wearout reliability.  We can consider 
then the appropriateness of exponential reliability modeling for electronic 
components.  If such components were simple redundant structures, they would be 
expected to exhibit wearout reliability.  If they are in fact complicated 
microsystems, then one would expect their reliability description properly to be 
exponential.  The latter situation seems to be the one observed and is certainly 
the basis of contemporary handbook reliability prediction.  There is also the 
implication that components that exhibit true internal redundancy be separated by 
class and modeled appropriately (wearout reliability). 

It has long been recognized that mechanical devices do not fit the exponential 
modeling pattern as neatly as do electronic components.  Hopefully, the reasoning 
of the last few paragraphs provides some relevant insights.  How then should 
sonar transducers be properly treated?  Structurally they are relatively 
uncomplicated.  One would look more for wearout failure modes than random hazard 
vulnerabilities.  This approach is in contrast to most transducer reliability 
modeling efforts, which thus far have attempted to apply the purely exponential 
approach borrowed from electronics reliability. 

The relationship of reliability to system or component complexity, simplicity, 
or redundancy features is subject to various confounding influences in practical 
situations.  Caution is advised as suggested by the examples presented in Section 
3.3.2. 

3.3.2 Further Confusion—Examples 

We have already noted some of the redundancy features of material used in 
bulk.  These properties depend largely on configuration, however.  Consider 
doubling the amount of material in a tensile member, for example.  If this involves 
preserving the length while doubling the section area, the loading performance 
and vulnerability to damage are both significantly improved.  If the length is 
doubled and the section area preserved, one expects a slight worsening of tensile 
strength because the probability of encountering a performance limiting flaw is 
doubled. 

A capacitor also seems to be a simple system involving a dielectric film 
placed between conductive foils.  This is not really a bulk application, however, 
since any single flaw in the dielectric can lead to voltage breakdown of the 
device.  Again, configuration details are important.  If the area of the dielectric 
is doubled while its thickness is kept the same, performance (capacitance) and 
vulnerability both increase.  If the dielectric area is fixed while the thickness 
is doubled, capacitance and susceptibility to voltage breakdown are both reduced 
(assuming that the operating conditions are not changed).  The reliability benefits 
are due to reduced specific loading rather than an ability to tolerate material 
damage.  The capacitor remains a nonredundant, exponentially reliable device.  In 
contrast, the tensile member can survive material damage, exhibits redundancy and 
wearout reliability. 

Redundancy can be artificially introduced Into a reliability problem by 
providing backup systems in one form or another.  When this is done, the overall 

system will exhibit classical wearout reliability even if all the subt-vstems 

14 



involved exhibit purely exponential reliability. Consider an example. Suppose a 
sonar array consists of 100 transducer elements each taken to exhibit exponential 
reliability Re where 

Re  = e~  l  . (40) 

Further, imagine that acceptable beam forming and acoustic signal recovery 
characteristics are achieved if 90 or more of the 100 elements are functional 
(This is our system success/failure criterion.). The probability of finding 
exactly m failed units among N total identical devices of reliability Re is 
binomially distributed via 

P  =  ,,;! v    R(N-m) [l-R }*. (41) m   m! (N-m)!  e     (    e ' 

More   explicitly  using  Eq.   (40) 

D        /•,. N! r   -X t ••, N-m f.        -Xt -im //«\ P..     (XL,      =    —rr=—rp I e ll-e . (42) 
N,m m! (N-m)!    * ; *• > 

Equation  (42)   is  a   discrete   probability  density   function which   for   all   t 
N 

meets   the   test    2   PN     (At)    =    I.     Acceptable   system  performance   is  asso- 
m=0 ' ' 

ciated  with   the  occurance  of   10 or   fewer  element   failures.     Thus,   we   can 
define   system   reliability   as 

R ^irabr   »^C1-*.)"      =     PBS(N,m,t). (43) s       gto  g'(N-g)! 

Equation  (43)  has   the   form  of  a   partial   binomial  sum   [hence  the  notation 
PBS(S,m,t)].     The  system  reliability  given  by Eq.   (43)   for  the  case  N  =   100, 
m  =   10  is   plotted  in Fig.   12a.     The   time-to-failure   probability  density   function 
associated with Eq.   (43)   is given by   fs(t)  =  -dRs/dt   [Eq.   (3c)].     Again,   using 
Eq.   (40)  and   performing  the   indicated   differentiation we   find 

fs(t)  =   (N-m)XPN „(At). (44) 

This function is a continuous probability density function satisfying fs(t)dt  =   1. 
o 

Equation  (44)   is   plotted  in Fig.   12b  for  the  case   of   interest   (N  =  100,   m  =  10). 
Comparing  Figs.   12  and  3  or 4  we   see   that   the  transducer  array  exhibits  reliability 
features   characteristic   of  wearout.     This  is  purely  the   result   of   allowing component 
redundancy   in  the  system  success criterion.     The  transducer  elements   themselves 
were   taken   to have  exponential   reliability. 

Let  us  consider an example  of  just   the  opposite  situation--a  case where 
components  subject   to wearout   alone   lead   to  exponential  system reliability. 
Bazovsky"   has   treated   just  such  a  problem  in examining  the   impact  of  making 
replacements  only as   failures  occur within  a  population of   10,000  light   bulbs. 
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In  the   interest   of  overcoming a   slight   oversimplification   in  Bazovsky's"   treat- 
ment,   let  us  reanalyze  a  similar  example.     Consider  a  group of  N  incandescent 
lamps  subject   to wearout   failures  only.     Take   the   time-to-failure distribution 
to  be  normal  centered  at  u   with  standard  deviation 0  as  shown   in Fig.   13a.     We 
imagine  that  as  each  lamp  fails   it   is  replaced   by a  new one.     Thus,   when all   the 
original   population  has dropped   out   of   service   it   has  been  replaced   by a   second 
generation of   lamps.     However,   these  units  have  been  placed   in  service  over a 
range   of   times  rather  than  all  at  once.     As  a  result,   the   time-to-failure  dis- 
tribution will   now  show greater dispersion  than  that  due   to wearout  effects 
alone.     This convolution   problem is  analyzed   in Appendix  C.     The   dispersion 
effects  continue   to  grow with each  replacement  generation.     Soon different   lamp 
generations  are  represented  at   the  same   time.     This  situation  is   shown   in Fig. 
13b.     The  superposition  of   the  individual   time-to-failure  distributions  represent- 
ing  various   lamp generations   is depicted   in Fig.   13c.     This   function  oscillates 
at  first  and   then  gradually  settles  to a  constant  value  of  N/u.     This equilibrium 
failure  rate   is  usually  unacceptaM     high.     Thus,  one  cannot  ordinarily   tolerate 
replacing wearout   failures  as  the}        -ur.     Rather,   it   is much more  productive   to 
anticipate wearout   (via  pilot  studies)   and  engage   in   preventive maintenance  a 
few  time-to-failure  standard  deviations  before  the mean wearout   life  u. 

In  the   example  just  discussed  a constant   failure  rate  develops because  the 
replacement   strategy  invoked   leads   to units  being placed   in  service at   random 
times.     This  has   the  effect   of completely masking the  intrinsic wearout   charac- 
teristic  assumed  to be  operative.     Another  implication of   the  constant   failure 
rate  that  develops   is   that   the   population will   decay  exponentially if   the  replace- 
ment  program  is abandoned.     This  is an example  of  exponential  reliability associ- 
ated with purely  wearout   failures.     Contriving  to  display exponential  properties 
within a  pure wearout  situation  is  not merely  a  pedantic  exercise.     Multiple 
test  stand  replacement   testing is   often  carried   out   in  evaluating the   performance 
of  exponentially reliable  units.     One  is  cautioned   to observe   the  distribution 
of   individual   times   to  failure as  well  as  the   total   number  of   failures  and 
total   test   time.     This  permits   the  confirmation of  a  true  random hazard  situation 
and  avoids confusion with  the  case where wearout   units are   placed  in  service  at 
random  times.     Similar  concerns  arise  in servicing  commercial  equipment.     Expe- 
riencing a  constant  replacement  rate   for a   particular  component does  not   alone 
determine whether  the  failures  involved are of   the  random or wearout   type. 
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4.0 RELIABILITY PREDICTION 

Reliability prediction is an exercise that one engages in prior to committing 
to the production of new hardware.  The purpose of it is to estimate the probable 
survival characteristics of the equipment against mission objectives.  A relevant 
dictionary definition states that to predict is to foretell with precision of cal- 
culation, knowledge, or shrewd inference from facts or experience.  Thus a solar or 
lunar eclipse may be predicted by measuring the relative positions of the sun, 
earth, and moon; discovering the laws that describe their motion; and calculating 
trajectories for future time.  Within the disciplines of physics and astronomy all 
of this has been elegantly accomplished.  On the celestial scale position and time 
can be simultaneously measured to high precision.  The problem is also well charac- 
terized by considering only gravitational forces.  Astronomical prediction is 
considered to be mature, satisfying, and successful. 

In a sense the philosophy of reliability prediction is the same as that of 
any predictive science—inferring some future behavior from past observations. 
Reliability prediction is also different in some ways than areas such as astro- 
nomical prediction.  In reliability work one is not generally concerned with 
dynamics—evolution from an observable initial state via discoverable laws of 
behavior.  (An exception to this statement is provided by the related area of 
failure analysis.) Reliability prediction usually attempts to draw inferences 
from similarities of a system of interest to hardware previously evaluated. The 
complex conditions of environment and use make more detailed treatments of relia- 
bility prediction problems very difficult.  One can even argue that some kinds 
of reliability problems do not exhibit a failure dynamics of much interest.  For 
example, in the random hazard situation one is interested in postponing catastrophic 
loss of function rather than examining its (rapid) development in time when it 
does occur.  In contrast, of course, the dynamics of weavout phenomena are a 
major issue. 

From earlier sections of the report we have seen that even under the most 
ideal conditions reliability information may be expected to exhibit a highly 
distributed character.  Of course astronomical observations are also distributed 
although dispersion effects are often much less significant giving the latter 
an appealing flavor of determinism.  This difference is not due to the inability 
of reliability studies to attract intellectual giants to play the roles Brahe, 
Galileo, Kepler, and Newton did for astronomy.  Neither is it the result of a 
lack of substantial and sustained funding.  Reliability prediction is an awkward 
and difficult discipline because of the diversity of objects of interest, the 
variability of environmental and use conditions, and difficulties in defining 
process endpoints.  Nevertheless when the economic benefits of improved product 
performance are considered, reliability studies are found to be very cost effective. 

In the following sections we consider briefly several relevant aspects of 
reliability prediction. 

4.1 Original Impetus 

Modern reliability studies as a formal discipline are generally taken 
to have originated with the German V rocket programs of World War II.  Early 
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thoughts were that quality of manufacture would be a secondary issue in a device 
intended to see service of only some tens of minutes.  The incorrectness of this 
line of reasoning was emphasized by the failure of virtually all of the rockets 
initially built.  It was then recognized that to have even a moderate chance of 
performing satisfactorily, a complicated system must be built of very highly 
reliable components.  The reliability of a system without redundancy is the product 
of the component reliabilities.  Learning this lesson turned out to be one of 
the prerequisites to entering the space age. 

When reliability concepts began to be introduced in connection with military 
procurements in this country, one of the first aggravating dispersion effects in 
this field surfaced.  Different contractors bidding on the same job would predict 
substantially different reliabilities for their versions of the desired product. 
Complicating the situation was that these conclusions were developed by using a 
variety of different unstandardized sources of supporting Information.  The climate 
was one that did not permit easy evaluation of the relative merits of competing 
proposals for the same work.  Thus a major Interest of the government in supporting 
the development of universal reliability prediction methods was to put competing 
contractors on equal terms.  If all bidders were using the same comprehensive 
source of reliability data in the same way, it was reasoned that superior predicted 
reliability would be a reflection of a better hardware design.  Ambitious as it 
sounds such a scheme has been implemented.  We now have a variety of military 
standards, handbooks, and procedures in place providing instruction for the uniform 
disposition of reliability questions relating to procurements.  Putting competing 
contractors on an equal footing has been pretty well accomplished.  In fact the 
heroic and well maintained edifice of reliability prediction tools has become 
so thoroughly entrenched that its users have largely forgotten Its origins.  There 
is a tendency among procurement managers to view reliability prediction as a mature 
and promising approach to obtain the kinds of answers they need for solving hard- 
ware supply problems.  Reliability studies are beneficial but they often fall short 
of the expectations people outside the field have for them. 

We have already seen that reliability prediction has succeeded in a relative 
way by equalizing the procurement process.  Not much work has been done in evaluat- 
ing the absolute success (How well does prediction compare with measurements on the 
same equipment?) of reliability prediction.  In one case that has come to this 
author's attention involving avionics radio equipment, prediction of the system 
MTBF produced values ranging from 2 to 10 times larger than those subsequently 
measured." Clearly this level of correlation does not allow prediction to be 
substituted for actual in-service measurements if a meaningful hardware evaluation 
is desired. 

4.2      Current Practice 

As presently implemented, reliability prediction generally takes one of two 
basic forms.  The standard handbook approach is very commonly used in the military 
hardware procurement setting for which it was developed.  The other major 
reliability discipline that lends itself to performance prediction is called 
probabilistic design.  From the user's viewpoint handbook reliability prediction 
represents a sort of cookbook approach to the problem.  Probabilistic design is 
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more analytical, distributional in focus, and academic in flavor.  One should not 
feel that one approach is correct and the other isn't.  Handbook prediction at 
times seems to lack rigor but nonetheless can be applied to rather complicated 
problems.  Probabilistic design can be quite definitive for small scale problems 
but often is prohibitively difficult or preempted by information gaps in larger 
settings.  We will look further at some of the basic features of these two 
approaches in the next two subsections of the report. 

4.2.1 Handbook  Methods 

I'nder  the  handbook methods  heading we will   limit  discussion  to   topics  dealt 
with   in   the  dominant   source work  in  this   field—M1L-HDBK-217c.     The   basic  nature 
and use   of  handbook   techniques  and  information will   be  considered.     It   is  also 
well   to  be  aware  of   the  proper  scope  and   limitations  of   handbook  prediction. 
Reference  7   addresses   the   latter  point   in  Section   1.3.     Electronic  components  and 
systems  are   taken   in  this  setting  to  be  exponentially reliable.     Thus   failure 
rates  are  additive  and  time  independent. 

MIL-HDBK-217C   is   the   latest  revision of   the most  definitive  document   relating 
to  the   problem  of correlating the  observed  and   expected   behavior   of   important 
classes  of   electronic   systems  and  components.     It   summarizes  in  tabular   form vast 
quantities  of  data  accumulated under  actual  field  service  conditions.     Most   of 
MIL-HDBK-217C  treats a  reliability  prediction method called   "Part  Stress Analysis". 
This   is  a  rather   detailed  kind  of  description  requiring  complete   design  and 
operating  information  relating   to   the  system  of   interest.     Implementing  this  approach 
requires  one   to know a  great  deal  about   prevailing thermal  conditions,   electrical 
loading,   and   the   service  environment  generally.     Assuming  these   identifications 
can  be made,   the  handbook   provides  associated  failure  rate  information either  in 
tabular  or analytic   form.     Generally  speaking,   the  desired   reliability   information 
is  structured  as  a   base   failure  rate  modified   by environment,   quality,   use,  etc. 
factors.     The  base   failure   rate   incorporates   temperature  and  primary electrical 
effects  and  is   specific   to  device  category.     The  modifiers  are multiplicative 
quantities  called ir-factors.     In  virtually all  component  categories   the  environ- 
mental   and quality   factors  ng  and TTQ  appear.     A  variety  of  other ir-factors  generally 
also  occur.     For  example,   the  part   failure   rate model   for  general  purpose  diodes 
is   expressed as 

(»I 7TQ    X    TTR   X    TTA TS2 irrjj    failures/106   hours. (45) 

The  subscripts  R,   A,   S2,  and  C  refer   to  current  rating,   application,   voltage 
stress,   and  construction  respectively.     The  base   failure  rate  for discrete  semi- 
conductors   (including  diodes)   is   represented as 

A [ f T 1*1 f f 273+T+(AT)S^Pl 
A[eXPU73 + T+(AT)S-)J[eXP( 1" )   J. M 

(46) 

where 
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A  is  a  scaling  factor. 

N-r,  Tu,  and  P are  shaping  parameters. 

T,  AT,  and  S are  temperature and   thermal   and  electrical 

stress derating  factors. 

The   base   failure  rate  and  the it-factors   for each device  category   treated  are 
all  presented   in MIL-HDBK-217c.     As an  example  of   the  range  of  variation  possible, 
the   environmental   and quality n-factors   for   general   purpose   diodes  are   presented 
in Table  II.     The usual  eleven environmental   stress  levels  and   five   levels  of 
component  quality are  displayed.     One  can   see   from considering these   two   factors 
alone  that  corrections   to   the  base   failure  rate can be  hundreds  of   times   larger  than 
the  base  rate  itself. 

MIL-HDBK-217C displays  a variety  of  analogs  to Eq.   (45)   relating  to electronic 
components  other  than  diodes.     The  versatility in  this   form of description comes 
in  the   introduction of   the wide   range  of  ir-factors   relating  to diverse  properties 
affecting the  performance  of  different  classes  of components.     Similarly Eq.   (46) 
is  only a  representative  case.     Other models  are  given  in Ref.   7   relating  to dif- 
ferent  situations.     In  reliability work descriptions  such as Eq.   (A6)  are  called 
"physics-of-failure"  models.     To a  physicist   this  language   is a  little heady, 
suggesting model  development  based  on  derivations   from first   principles.     Actually 
failure  rate models   should more  properly be  thought  of  as  phenomenological 
characterizations.     Forms  have  been developed that with  the   adjustment   of  relatively 
few parameters  allow a  large amount  of   field experience  to be cataloged and 
summarized.     There  is  no need   to apologize   for  this  situation.     Thermodynamics 
Is  largely a  phenomenological  discipline.     The   latter also  has a  proper microscopic 
basis  in  statistical  mechanics,   of course.     One  can  think  in  terms  of   exploring 
reliability  problems more   fundamentally with a  view toward  correlating  cause  and 
effect.     This  is  the   failure analysis  approach which occasionally is   invaluable. 
It must  be  used  sparingly,   however,   in order  to keep  the  scope  of   the  overall 
problem within  tractable  bounds. 

The  electronic  components   for which handbook  reliability data  sources  have 
been  developed are   treated  by  generic  class.     There  are many hundreds  of  junction 
transistor  types  that  carry distinct   part  numbers.     These are  not  distinguished 
for handbook reliability  purposes—they are  all simply Group  I   discrete  semicon- 
ductors.     Obviously  then handbook  reliability data  is class average   information. 
In  the handbook  setting measures of dispersion within classes are  never  reported. 
Similarly  the user  is never made aware of   how much  test/service  time  and how 
many observed  failures  support   reported  failure  rates.     Thus one  is  not   in a 
position of  being able  to make  statements about  the  statistical quality of  hand- 
book   prediction.     This  is consistent  with  the  view of  the  authors  of KIL-HDBK-217C 
who  disclaim the absolute accuracy of  handbook  predictions while maintaining 
their relative usefulness  in  the   parallel  procurement   setting.     Obviously  the 
handbook  user  Is  not  being misinformed.     One can argue,  however,   that  he  is  left 
seriously   uninformed  by  a method  that   suppresses  and  fails   to  pass on  available 
dispersion  information. 

Thus  far  in  this section we  have  discussed  the Part Stress Analysis,   or 
more  detailed   type  of  handbook reliability description.     Its   implementation  calls 
for a mature  system design and   rather complete knowledge  of  component  electrical 
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Stresses,   power   dissipation,   thermal   and   mechanical   loads,  etc.     During the 
preparation and   evaluation  of  contractor  proposals  and  early  product  design 
phases,   much   of   this   information   is  not   available.     In  this   setting the  "Parts 
Count"   reliability   prediction method   is  often employed.     Here  one  need  only 
identify components  by  generic   type,   quantities,   quality  levels,  and  the   intended 
operating  environment.     The   total   equipment   failure   rate   is given by evaluating 
the  sum 

Vn.iTP    =      I   M*C*«><   • <47> EQUIP 
1=1 

where 
X     =   failure   rate   for  the   itn generic  part 

G 
it     •  quality   factor   for   the   ifc^  generic   part 

Nj   =  quantity  of   i       generic  part 

n    •   number  of  different   part  categories. 

Equation  (47)   applies   to a  single  operating environment.     If  different   sections 
of   the  equipment   operate   In different  environments,   then  partial  sums  of   the   form 
of Eq.   (47)   should   be   performed  on a   per-operating-environment   basis  and   added. 
The   parameters   of  Eq.   (47)   are  tabulated   in Section 3.0  of MIL-HDBK-217C.     Testi- 
mony   to  the   relative   simplicity  of  this  approach  is   that  exposition   of   the method 
and  presentation  of   all  the  supporting material   requires  only  10  pages  of   text. 

If  as  we  have   seen  the  accuracy  of  Part  Stress Analysis  reliability   prediction 
is  suspect,   then  It   is necessary  to approach Parts Count  results with still great- 
er   skepticism.     This   Is   true  because  a  great  deal   of  relevant   information relating 
to use  conditions   is  simply  not  available  at   this  stage.     Caution:     If  a  contractor 
offers   to  just   barely meet mission  reliability objectives on  the   basis   of  a  Parts 
Count   prediction,   let   the  buyer beware.     Similarly,   it  is  folly  to contemplate 
substituting any   form  of   prediction   for  a  bona   fide   post-manufacture  reliability 
verification  study   if  one  really wants   to  properly characterize  hardware  performance. 

4.2.2 Probabilistic  Design 

Probabilistic  design  refers   to  a developing  method  of  approaching  reliability 
and  related  engineering  design   problems   that  emphasizes   their  statistical  aspects. 
Every measurable  engineering  parameter  is   taken  to be  distributed   rather  than 
deterministic  (having a  single  value  only).     The   performance   of an entity of 
interest   is described   in  terms  of   the  stresses   It   is  subjected   to and   Its  strength 
or  ability   to  function  in  a  given  stress  environment.     In quantifying this   approach 
strength  Is defined  simply  as   the  stress  level at which  failure occurs.     These 
terms are used here  in a generalized sense.    Thus  stress may be electrical,  ther- 
mal,   mechanical,  hygrometric,  etc.—any  relevant   loading aspect  of   the  situation 
of  interest.     Failure must  also  be  adequately defined whether  it  be  catastrophic, 
onset of   irreversible damage,  or some  specified property degradation.     Against 
this background  reliability is defined as  the   probability that  strength  exceeds 
stress.     For a  system,   of  course,   one has  to  ask   this  question  simultaneously 
about  every relevant  stress/strength  facet.    The key  to performing probabilistic 
design  Is  to properly characterize  the strength distributions of  a piece of 
hardware  and  also  identify   from a distributional  viewpoint  the stresses  operative. 
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Kececloglu0 gives a detailed fifteen-step methodology charting how one might 

systematically grapple with a probabilistic design problem.  Reference 3 also 
treats this topic in Chapter 4 with some minor variations from the approach pre- 
sented in Ref. 8.  The topical areas of Kececioglu's probabilistic design meth- 
odology are listed in Table III.  It is beyond the proper scope of this report 
to attempt to convey to the reader a working appreciaticn of the probabilistic 
design method.  However, an effort will be made to elucidate the underlying 
philosophy of the approach.  Probabilistic design is basically a very detailed 
stress/strength overlap calculation.  Reliability is simply the probability that 
strength exceeds stress under the conditions of the intended application.  One 
can see from Table III that reliability prediction is one facet of probabilistic 
design.  Normally, however, the focus is not on prediction of reliability but is 
directed toward tailoring design parameters to achieve a desired performance 
objective.  In either case the price of measuring success can be quite high. 
Probabilistic design is a demanding discipline in terms of the quantity and qual- 
ity of informational inputs required. 

One should expect the probabilistic design approach to reliability questions 
to be ultimately compatible with relevant phenoraenological descriptions.  For 
example, exponential reliability is implied by a situation involving static and 
somewhat overlapping distributions of stress and strength.  This leads to a con- 
stant vulnerability or failure probability per unit time or per load cycle.  In 
contrast wearout is characterized by a tnonotonic loss of strength due to either 
fatigue under load or dissipative influences of the service environment. This 
increases the interference of stress and strength distributions leading to an 
increasing probability that additional service will result in failure. A specif- 
ic example of corrosion wearout is treated probabilistically in Section 5.4. 
The early failure situation is also easily interpreted from the probabilistic 
design viewpoint.  In this case the initial strength distribution is skewed to 
the left embracing substandard components.  Application of normal service stresses 
leads to significant stress/strength overlap and a high probability of premature 
loss of function.  In this case failures may also occur in transit or otherwise 
prior to being placed in service. 

4.3 Limitations in the Sonar Context 

We have just discussed the motivations for and some of the major 
developments in the area of reliability prediction.  In recognition of the 
importance of product reliability and the successes of reliability studies in 
other areas, the Navy sonar community has taken steps to systematically improve 
sonar hardware through efforts having reliability as a specific focus. This 
kind of commitment has already produced beneficial results.  Thus far, however, 
the benefits have been largely of a debugging nature—discovery of overt design 
or manufacturing defects—rather than the optimization of designs already 
established as workable. To those who felt that reliability prediction was 
already mature science (or art), recent progress in the sonar area has seemed 
painfully slow. There are several reasons that this should be so. Much sonar 
transducer reliability prediction work attempts a description from a components- 
level, random hazard point of view. This suffers from certain weaknesses.  Sonar 
transducers are not assembled exclusively from components that are properly 
characterized by constant hazard functions. Wearout processes such as metal 
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fatigue  and  corrosion  and water  permeation   of   elastomeric  materials  are  also 
operative.     Many components  are  nonstandard  from a   reliability  accounting point 
of   view  so  that  handbook   failure  rate   source materials don't   apply.     This   places 
the   reliability data  acquisition  task   in  the hands  of   transducer  production  con- 
tractors or  even  the  end user—the  Navy. 

A primary   purpose  of   this  report   is  to  help   the  reader  cultivate  an  appreci- 
ation   of   the enormity  of  the   task of  gathering  meaningful   reliability  data   for 
transducer  systems.     Why do  transducers   pose  a  particularly difficult   problem? 
Several   reasons.     Transducers  are  intended   to  be   long   lived  and   opportunities 
for  observation and  maintenance  of   installed units  are  few and   inconvenient. 
Transducers  are  a   specialty  item and  production quantities  are usually  quite 
limited.     These  two   factors  combine  to make   it  very difficult   to  gather  together 
enough  units   to do  statistically  significant  reliability  testing.     An  even  greater 
challenge   is   to  produce   reliability  results   in a   timely   fashion--when  they  can 
impact   the  hardware   involved   during  design and   development  stages. 

To  this  author's  knowledge  a  complete,   integrated   transducer  study advertised 
to  be  a   probabilistic   design  evaluation has  never  been attempted.     And  yet  many 
of   the  elements  of   a  probabilistic  design  study are  routinely developed  by   trans- 
ducer  acoustic   design  specialists  and  production engineers—persons  whose   focus 
is more  on performance   than  reliability   per  se.     Dynamic  stress  analyses  of  driven, 
mass-loaded piezoelectric  ceramic  and  fatigue  loading studies  of  stress  rods  and 
pressure  release  systems  are  examples.     There  are many case  histories where  this 
kind   of   evaluation has  led   to  design   changes  or manufacturing  adjustments  asso- 
ciated with dramatic   transducer  reliability   improvements.     Significant  progress 
is   possible  and has  been  achieved  in areas  where  operational stresses  and  the 
strengths  of   component materials  employed are  both well  characterized.     The 
difficult  situations  are   those where  the   properties   of   the materials   involved 
change with  time  and   temperature  and  perhaps  loading history  and   the  stresses 
operative have environmental  origins  and  exhibit   large   fluctuations.     Well 
developed  mechanistic  stress/strength overlap  interpretations  of   phenomena  such 
as  water  per'    ation,  corrosion,  and  bond  degradation  have  not   yet  been  given. 
These  are  areas known   to  be   important  and hardware  life-limiting  in many  situa- 
tions.     This   provides  a  strong incentive   but does  not   otherwise  simplify  the 
large   task of  assembling  distributional   information  needed  for probabilistic 
evaluation   of   these  highly  variable   processes.     Specific  areas  of  difficulty are 
discussed   in greater  detail   in  subsequent  sections  of   the  report. 
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5.0       LIFE PREDICTION 

In  connection with characterizing  the  serviceability  of  hardware,   the   term 
life  refers   to  the  entire   period   of   useful,   failure-free   operation.     Life  as  a 
descriptive   parameter   is dual   to  reliability.     Reliability   Is   the   probability  of 
realizing acceptable   performance   for   a  given   period   of   time   (some mission  duration 
or  the   period  between overhauls   for  example).     Life   is   the  actual   time   that   such 
performance   is  achieved.     Many  similar   equipments  can  be  monitored   to  obtain  a 
distribution  of   lifetimes.     Formally   from F.qs.   (2)  and   (6)  of  Table   1,   reliability 
is one minus   the  cumulative   of   the   distribution  of   lifetimes.     Conversely   from 
Eq.   (3c)   the  distribution  oi   equipment   lifetimes   Is  equal   to   the  negative   time 
derivative   of   the  reliability  function.     As  with  reliability notice  the  distribu- 
tional   flavor when we   speak  of   hardware  service   life.     We  never  inquire how  long a 
specific   Item will  continue   to  operate.     Rather we  ask  about   Its   expected   life  or 
the average  or most   probable   lives  of   similar  equipments.     These are measures  of 
central  tendency of  some body of distributed Information.     If we are  sophisticated, 
we  also   look   into   the  dispersion,  asymmetry,  etc.   of   the  distribution when  this 
seems  justified  by  the  quality of  sampling statistics. 

Since  service  life and  reliability are distributionally related,   life 
prediction and reliability  prediction are  really  equivalent  exercises.     For 
example,   in doing handbook reliability  prediction one arrives at a superposition 
failure  rate,  Inverts  It  to obtain  the mean time  between  failures  (MTBF), and 
exponentiates   the  (negative)   failure  rate   times   time   to  obtain  reliability.     Thus 
conjugate  reliability and   life   information   Is developed simultaneously.     If 
reliability  and   life  are  so  closely  related,   why do we  address   the  two  as  separate 
topics   In  this   report?    This   Is  a  good question.     Within  the  context   of  reliability 
theory   the  separation  seems  unnatural.     But when  practical  concerns  are   raised 
the   reverse  Is   true.     Basically,   whether  equipment  is  used  in  a military, 
commercial,  or  consumer  setting,   one   Is  Interested  In  two   things—how well will 
the  hardware   function and  for  how long?    The  answers   to  these  questions enable  us 
to  determine whether mission requirements will  be met  and what maintenance and 
replacement costs and schedules will be.    How well does  equipment function (over 
some   specified   time   interval)?     This  Is   reliability.     How  long  does  It  continue 
to work?    This Is  life. 
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The   reliability/life  dichotomy  sorts   itself  out  somewhat when we  distinguish 
random hazard and wearout effects.     In the   latter case  times   to failure  often 
tend  to cluster so  that any measure of central   tendency Is a reasonably descriptive 
service   life   estimate.     In contrast   for  the   random hazard situation MTBF  is  a 
poor measure  of   the  broad  exponential   distribution of   times  to  failure   that  one 
expects   to encounter.     A much crlsper  description  is  obtained  by  specifying the 
probability  of   surviving a mission of  given duration,   I.e.,  the  reliability.     One 
can  further   interpret   the   random hazard situation as  exhibiting a  constant  overlap 
of   the  associated  stress  and  strength distributions  or  an  Invariant vulnerability 
to catastrophic  damage  due  to extreme  load fluctuations.    The reliability  parameter 
Is  a measure  of   this.     Wearout,   on  the  other  hand,   Is  characterized  by  the 
accumulation of damage  until  residual strength  Is commensurate with load stresses 
encountered   In normal  service.     Failure   Is   Inevitable  and  often with a very 
predictable  time  scale. 



Often a  system  of   interest   exhibits  random hazard  and  wearout   effects 
simultaneously.     These mav be   independent  or  strongly coupled.     Kor  example,   a 
capacitor may manifest  an  exponential   voltage  breakdown   reliability  characteristic 
and  suffer  fatigue wearout   failures  with  thermal   cycling.     The   former  is  a measure 
of  the   intrinsic   resistance   of   the   dielectric  material   to  perforation  under 
overvoltaging  conditions.     The   latter may  be  due   to   improper   lead  dressing 
resulting in  excessive   flexure   in  service.     These   two  effects  are  unrelated  and 
we mav   speak  of  both a   (voltage   breakdown)   reliability  and   a   (mechanical   fatigue) 
wearout   life.     The   two  effects  can  also  be   treated   together  in   terms   of  either 
reliability  or   life  concepts. 

An  automobile   tire   is  an  example  of   a  system which  exhibits  coupled   random 
hazard and systematic  or wearout   reliability aspects.     The  stress  environment   is 
due   to  ordinary  road  hazards--stones,   chuckholes,   railroad   tracks,   etc.     However, 
the  strength   of   the   tire  or  its  ability   to  survive   exposure   to  the   stress 
environment  without  sustaining  damage   is  not   static.     Rather   the  strength decreases 
as   tread  material   is  worn  away  in  normal  service.     Thus,   the   random hazard 
vulnerability   increases  as  the wearout  process  proceeds.     And  of  course   if  normal 
preventive maintenance  steps  were  eschewed  in  this  case,   the  tire would   eventuallv 
succumb   to  a  programmed wearout   failure  due   to  a   random   load  stress. 

The   practice   of   speaking  of   reliability and   life  as   if   they  were   unrelated 
may   stem  from  formulating  separate   treatments  of   the   random hazard  and wearout 
aspects   of  reliability   problems.     Life   prediction must   then  emphasize wearout 
considerations.     Let   us  bear  this distinction as  well  as   the   formal  unity  of   the 
subject matter   in mind  as  we   further  explore   the   life   prediction   problem in   the 
following  sections   of   the  report. 

5.1 Definition  of  Life 

We  have  already  noted   that   life   in  reference   to  hardware   is   the  period  of 
useful,   failure-free  operation.     For  reliability  evaluation  purposes   it   is   often 
necessary   to  be very   specific  about what  constitutes  acceptable  performance. 
This may be  easily accomplished such  as   in  the  case   of  an  incandescent   lamp   for 
home   lighting.     If   it   lights when voltage   is  applied,   it   is good;   otherwise   it   is 
considered  failed.     In  the  electric   light   case   the   transition  between  good  and 
failed   is  usually  quite  abrupt  corresponding  to   the  evaporation  of   a  portion of 
an  old and  weakened  filament.     Most  hardware   evaluation  situations  are more 
complicated  and  subtle.     In  a  photo-processing  application  our  electric   lamp may 
have   to  be   discarded  when  its   intensity or  spectral   output   fall   outside  acceptable 
limits   rather  than when  the  filament  disintegrates.     These   two  cases  are  examples 
of  general   classes   of   failure  criteria:     the   sudden  and  complete   loss   of   some 
physical   function  or  the  gradual  migration  of   a  performance  property  outside   the 
normal useful   range.     In  complicated   equipment,   of course,   many  subsystems must 
simultaneously meet  appropriate  performance   tests.     The more   restrictive   such 
situations  are,   the more   difficult   it   is   to  be  assured  in   practice   that   in-use 
equipment   is  performing  adequately.     For  example,   in  sonar applications   terminal 
resistance  or  drive   power measurements do  not   provide   detailed  information  on 
transducer efficiency or  array beam-forming  characteristics. 

We  have  spoken   of   failure-free  operation  as  defining the   period   of  useful 
equipment   life.     This does  not mean  that  no  failures  can  be   tolerated.     Obviously 
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when a repair is effected, equipment is revitalized and can be returned to service. 

One might be tempted in some circumstances to define service life to be that 
period of time when the hardware reliabilitv remains above some specified level. 
This turns out to be circular since reliability Is related to the time-to-failure 
probabilitv density function or distribution of service lifetimes.  Thus, it is 
necessary for individuals who draw up equipment specifications to decide very 
specifically what performance requirements need to be imposed.  Reliability and 
service life are not defined except with respect to specified levels of perform- 
ance (or complete definition of failure or non performance) under conditions of 
environment and use that are also fully characterized. 

5.2      Some Dynamics of the Terminal Process 

It is often convenient to identify the condition that corresponds to hardware 
failure (or the end of useful life) as irreversible damage due to some form of 
overstress.  The transition from an unfailed to a  qiled state we choose to call 
the terminal process.  This may occur rapidly with the application of an 
environmental overstress to a "good as new" structure.  The vulnerability to 
rapid catastrophic failure may also build gradually via a wearout process associated 
with or incidental to normal use.  Corrosion and fatigue have already been compared 
and contrasted from this point of view.  In addition catastrophic change of state 
or loss of function need not occur at all for an item to be declared worn out. 
Automobile tires, for example, are ordinarily replaced in response to cues less 
dramatic than a flat or a blowout. 

It is not our purpose here to engage in serious failure analysis.  We shall 
avoid attempting to review specifically what can go wrong with the devices we 
build.  It is of the utmost importance, however, to recognize that equipment can 
and will malfunction.  This realization together with the motivation it stimulates 
to pursue sound design principles and constructive maintenance practices may be 
our best defense against unreliable hardware.  Regarding the relative importance 
of these two features (design and maintenance) we can look to the complicated 
organic systems (including man) found in nature.  Here repair Is as dynamic and 
highly organized as creation itself. 

5.2.1    Random Hazard Case 

We have looked at the random hazard situation from a reliability point of 
view.  Now let us consider this case from a perspective emphasizing stress/strength 
overlap and the mechanism of failure.  The stress/strength overlap description 
of a random hazard problem is static in the sense that the strength distribution 
is taken to be fixed.  This means, of course, that the conditions of use do not 
physically degrade the item of interest (until the ultimate catastrophic failure 
occurs).  Also we are concerning ourselves with operation under uniform environ- 
mental conditions.  A uniform environment is not one that does not exhibit varia- 
tions.  Rather it is statistically repetitive over time intervals of reasonable 
length.  Shooman in Chapter 8 of Ref. 9 considers the application of stresses 
distributed randomly in time according to a Poisson distribution 
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g(n,t.) = 
,  . n -Vt 
(vt) e C8) 

to a part having a static strength represented by the distribution f(S). 
Equation (48) gives the probability that n stresses will occur in a time interval 
of duration t.  The amplitudes of these stresses are understood to be distributed 
as some f(s).  Shooman" calculates the probability that n stresses will occur and 
that the component of interest will survive all of them.  Summing over all n yields 
the overall time dependent probability of success or component reliability 

-Qvt 
R(t) (49) 

where Q is the static unreliability associated with a single probabilistic stress/ 
strength overlap encounter.  Kececioglu and Cormier10 have provided the analytical 
machinery for calculating Q and its complement the static, single stress cycle 
reliability R = 1-Q via the expressions 

, 

and 

R    = 

Q    = 

f(s)     I   f(S)dS   ds    = 

f(s) f(S)dS    ds 

f(S) 

f(S) 

f (s)ds   dS 

f(s)ds dS 

(50a,   50b) 

(51a,   51b) 

Equation  (49)  gives   the   time  dependent   survival   probability of  a  component  exposed 
to  stresses  imposed  randomly  at  an average  rate  of v   per unit  time when  the 
probability  of   surviving a  single   such load  cycle   is R. =  1-Q.     Combining Eq.   (49) 
with Eqs.   (3c)   and   (4a)   the  time-to-failure  probability density  and  hazard  rate 
functions are 

and 

f(t)     =    Qve 

A(t)     =     Qv 

-Qvt (52) 

(53) 

The   case we  are   dealing with assumes   that   the  static  unreliability Q  is constant. 
We   see  then  that   randomly  stressing  components  of   invariant  strength does   in  fact 
correspond   to  the  constant  hazard  rate,   exponential   time-to-failure  pdf,   exponential 
reliability  situation. 

Further   insights  can  be  developed  from  this model.     If   the  stress environment 
is  altered or  if   the   part  strength distribution  is modified   via  design,   materials, 
or manufacturing  process  changes,   the  static unreliability Q  is changed  to a  new 
constant  value.     The   exponential  reliability model  still  applies  but with a  new 
value  of   the parameter >.    This  is  the basis  for environmental,  quality,  derating, 
etc.   factors  employed  in  handbook   prediction.     If   all   applied stresses   induce 
part  failure,   then Q =  1   and  A   = v.     The model  continues  to  exhibit  exponentially 
distributed  times   to  failure and  Poisson  distributed  failures   per  time  interval. 
This  is a well known  relationship 1 ;tween  these  two  distributions  (See  for example 
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Appendix  10.A of Ref.   3.).     We  can also  see   from Eq.   (53)   that   the  hazard rate X 
may  be   reduced   by decreasing  the  stress/strength  overlap unreliability  Q.     A  plot 
of  a   typical  stress/strength  overlap  situation  is  shown  in Fig.   14.     Again 
following  Ref.   10  the  unreliability Q  is  given  via Eq.   5la  as   the  area under  the 
stress-at-failure   distribution  function 

f'(s) 
dQ(s) 
ds f(s) f(S)dS dR(s) 

ds (54a,   54b,   54c) 

There  are  a  variety of  situations   for which  the   above   description would  not 
be adequate.     If   the  component were   required   to  operate   in  statistically distinct 
environments,   Q would  not  be  constant.     Temperature  dependence   of   the  strength 
distribution would  also  be  a  complicating  feature.     If   the  part   strength distribu- 
tion   is degraded   by  the  application  of  stress,   the   unreliability Q would  depend  on 
loading history.     The   latter  case  represents  a  general  class  of  wearout   phenomena. 
We  consider wearout   in   the  next   section  of   the  report. 

5.2.2 Wearout 

Wearout   refers   to a  systematic   loss of   functional   integrity with  time.     This 
may be   load  or use   induced as   in  the  case   of   fatigue.     Wearout-  may also  proceed 
independently of   loading as   in  the  examples  of  corrosion  or  on-the-shelf  degrada- 
tion   of   unstable   chemicals.     The   characteristics  usually emphasized  in connection 
with wearout   phenomena are  a  strongly  peaked  time-to-failure  pdf  and   its  associated 
increasing hazard  rate. 

The  stress/strength overlap description of   the   random hazard  situation  given 
in  the   previous   section may be  readily  generalized   to  include wearout  phenomena. 
In   the  simplest  case we   retain  the   feature  of   stresses Poisson distributed   in 
equal  time  intervals.     However,   the  stress/strength  overlap  unreliability Q  (or 
per-loading-cycle   probability  of  component   failure)   is   taken  to  be   time  dependent. 
Thus Q •»   Q(t).     If  Q(t)   Is  a  decreasing function,   we  are   dealing with early 
failures  or  infant mortality.     Wearout   is,   of   course,   described  by an  increasing 
Q(t).     The   expressions   for  reliability,   time-to-failure   probability density 
function,  and  hazard  rate  analogous   to  Eqs.   (49),   (52),   and  (53)  are 

R(t)     =     exp(-Q(t)vt)   , (55) 

and 

f(t)     =     v 

X(t)     =     v 

Q(t)   +t{^)]«p(-Q(t)vt)   , (56) 

(57) 

In a wearout situation Q(t) ranges monotonically from a low initial value to a 
maximum of unity.  Q(t) • 1 represents such a severe strength degradation that 
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everv  applied  stress  may   be   expected   to   Induce   failure.     This   is  a   saturation 
situation   |0(t)   cannot   become  any   larger]   so   that  dQ(t)/dt   = 0.      In   this  case  of 
complete  wearout   we   see   that   the   hazard   rate   X   becomes   equal    to  v   the   parameter 
of   the  Poisson distribution  of   applied  stresses.     From   the  close   relationship of 
the  Poisson and  exponential   distributions,  \j   is  also  recognized as  the  average 
rate  of   occurrence   of   the   random  applications   of   stress. 

Equations   (55)   through   (57)   relate   the   important   reliability/11fe   functions 
to  the  stress/strength  overlap  parameter Q(t)   and   the  average   frequency  of   stress 
occurrence v.     In  a   still   more   general  context   the   rate  at  which  stress  applications 
occur  may   itself   be   time   dependent   so   that  v   becomes  v>(t).      In  addition   the   time 
dependence   of   the quantity Q(t)  may  be  due   to  both component   strength degradation 
and   time  dependence  of   the  distribution envelope  of  applied  stress.     The   latter 
description  applies   to  changes   in   service  environment  or  conditions   of  use.     Such 
a  situation  requires   further  generalization of  Eqs.   (55)   through   (57).     This   is 
streamlined   by  introducing a   new   parameter   that   contains   all   the   time   dependence 
of   the   problem.     Let 

z(t)     =     Q(t)v(t)t. (58) 

In   terms   of   z(t)   the   reliability,   time-to-failure   pdf,  and  hazard   rate   functions 
take   the   simple   forms 

R(t)     =     e"z(t), (59) 

f(t)     „     (MO)e-z(t), (60) 

«t>     -      ^. (61) 

and 

We are now in a position to further compare and contrast life prediction and 
reliability prediction.  In one sense the two approaches are totally equivalent 
via Eqs. (la) and (3c).  Usually, however, reliability prediction refers to 
drawing conclusions from actual time-to-failure experience with components or 
systems.  This may be termed a macroscopic approach to evaluating the functional 
forms of R(t), f(t), and A(t) directly.  Often this takes the form of using the 
available data to verify that some model such as the exponential, Weibull, or log 
normal is in fact appropriate.  For the Weibull case, for example, one asserts 

z(t) = (——*J  and adjusts y,  ß, and n to best represent the- data.  In implement- 

ing the life prediction approach it would not be necessary to observe actual 
failures In normal field service.  Rather one would characterize the operating 
stress environment (by ascertaining both a frequency profile v(t) and an ampli- 
tude distribution f(s) representing the loading situation).  A study to determine 
the strength distribution f(S) of the item of interest is also required.  Compli- 
cating features are that f(s) and f(S) may themselves both be time dependent 
(perhaps implicitly via another factor such as temperature).  If all of this 
information is obtainable, Eqs. (51) and (58) may be used to evaluate z(t).  The 
reliability, life, and hazard functions are then found via Eqs. (59), (60), and (61), 
Which of these two approaches is the more tractable one is a decision that must 
be made for each problem on its own merits. 
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A simplified wearout modeling exercise  is   presented  in Section  5.4.     Corrosion 
is   taken  to  be   the  operative  mechanism and  the distributed  character  of   important 
parameters  is  emphasized. 

5.2.3    Mixed Populations 

In reliability work it LS common to generalize and classify causes of 
equipment malfunction as early, random, or wearout failures.  Karly failures are 
associated with hardware which was not delivered in satisfactory condition to 
begin with.  Manufacturing defects or damage during inspection or shipment 
resulting in premature loss of function are examples of causes of early failures. 
A decreasing hazard rate, an initially very large time-to-failure pdf, and a sharp- 
ly decreasing (initially) reliability function are associated with early failures. 
The random hazard situation has been discussed previously and refers to the chance 
occurrence of stresses large enough to induce failures in components of normal 
(ordinarily adequate) strength.  For example a random failure of an automobile 
tire might be induced by impact with a foreign object on the roadway.  Such an 
occurrence is random because there is nothing about it favoring one time interval 
over another (of equal duration).  Random failures exhibit a constant hazard 
rate, exponential reliability attrition, and exponentially distributed times to 
failure.  Wearout failures, on the other hand, are those that occur because 
component strength has eroded to the point of not being able to withstand the 
stresses of normal service.  In this case the situation further deteriorates as 
time passes.  The hazard rate is an increasing function, the time-to-failure pdf 
is peaked, and the reliability function is high at first and then falls sharply. 

When a group of hardware items is subject to more than one of the above 
failure modes simultaneously it is termed a mixed population.  For example a 
shipment may contain some Initially defective as well as some normal units.  This 
group would be expected to exhibit early as well as random or wearout failures. 
It is also not uncommon for random and wearout failures to be intermingled.  An 
item can be characterized by a vulnerability to random overstress while processes 
are underway to erode the distribution of strengths from initial nominal values. 
In this case the same group of components would exhibit random and wearout behavior 
at the same time.  More generally in a system certain components may show 
predominately random hazard behavior while others fail due to wearout.  In either 
case a proper reliability/life description involves dealing with both aspects 
simultaneously.  Early failures way have to be treated also although at the mature 
system level one prefers to have weeded out this category via some form of testing 
or burn-in procedure. 

Formally dealing with mixed populations is straightforward enough although 
there are practical difficulties of course.  The different aspects of the problem 
are taken to be independent so that the overall reliability is simply the product 
of the reliabilities of the relevant subclasses.  If one proceeds from the life 
prediction point of view and these functions have been characterized, there is no 
problem.  The situation is more complicated, if the reliability viewpoint is 
taken to interpret time-to-fa11<tre data.  It must be recognized that no single 
familiar distributional model applies to this situation.  In principle if the 
form of the superposition is known, curve fitting may be employed to fix the 
values of the relevant parameters.  This approach is tenuous because the statis- 
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tical quality of reliability data is not usually sufficient to permit good sep- 
aration of several factors contributing to the detailed description of a subtle 
superposition   problem. 

5.3 Implementation  Philosophy 

We   have   touched   on   the  duality  of   reliability  and  service   life  concepts.     One 
description   implies   the   other.     For   the   sake   of   establishing a   consistent   use   of 
the  nomenclature   the   following  posture  has  been  adopted   in  this   report:     Reliability 
prediction or   tue  reliability  viewpoint   refers   to  Interpreting actual   equipment 
failures  under actual use  conditions.     This would   include   time-to-failure  data  or 
numbers   of   failures   in  established   intervals,   for  example.     This   is   termed  a 
macroscopic   approach   since   it   trea;s   phenomenological ly  only  observed   failures. 
In contrast   life   prediction or  the  expected service   life  approach  is  a microscopic 
method  that   exmines   in  detail   the  conditions   that   cause   failures   to  occur. 
Measurements  are   taken   to  establish a  statistical   description   of   the   strength   (in 
a  generalized  sense   referring   to  resistance   to  a  variety  of   types  of   stress)   of 
the  components   of   interest.     The   loading or   stress  environment must  also  be   fully 
characterized.       This means  determining   the  amplitude  and   time   spectral   features 
of  applied   loads.     In   all   btr   the most   restrictive   laboratory   settings,  this 
becomes a   task of  great  complexity.     The method  is   therefore  appealing when  the 
reliability/life   problem  can  be  reduced   to   perhaps  a  single  aspect   of   particular 
concern. 

There   is  another  area  of   activity   usually called  accelerated   life   testing 
that   overlaps   the   two  approaches  discussed  above.     Thus conclusions  are  drawn 
from  time-to-failure  data  as   in   the   reliability  approach.     But   this   information 
is developed  in a  compressed  time  domain  by  manipulating (increasing the   severity) 
of   the  applied  stresses.     Interpreting  accelerated   testing   requires  a  detailed 
correlation   of   the   overstress  situation  utilized  with  the  nominal  stress conditions 
of   primarv   interest.     This   implies  a  simultaneous  understanding  of   the  problem 
from the   stress/strength  overlap  viewpoint.     There   is  a  substantial   literature 
dealing with  accelerated   testing.     Chapter 9  of  Ref.   11   is  a  good point  of 
departure.     However,   further   discussion   of   this   topic  is  outside  the   scope  of 
this  report.     As  one  can  begin   to  see   the   reliability  problem  is  staggering   in 
scope.     Occasionally an   impasse will   be  reached  which  can  be   resolved   by   failure 
analysis.     For example  a mixed  population  situation may  lead   to data  not  described 
by a  single  model.     Examining the   physical   character   of  each   failure may  allow 
decomposition   into  subclasses   that  are more  easily  interpreted. 

5.A     Dispersion Effects—An Example 

In   this  section an  example   time-dependent   stress/strength  overlap calculation 
is   presented.     Its  discussion   under  this  heading has   to  do with  the   important 
effects  of  distributional   properties   (in   this  case  of   the  corrosion  process  taken 
to  be   inducing wearout).     The   problem  models   the  strength attrition   of  a   cylindrical 
load   bearing  member under   the   influence  of   a  corrosion  process   that  decreases   its 
radius at  a constant   average   (but   distributed)  rate.     The   process  wearout  endpoint 
or  strength  service   limit   is   taken  to  be  an  arbitrary constant  value.     This   is 
equivalent   to  dealing  with  the  situation where   the   reliability  description   is 
developed using  a   failure governing  stress  regarded as a deterministic  (disper- 
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sionless)  constant.     Adopting this  approach   allows   the   Interesting  reliability 
insights   to  be  developed  at  a minimum cost   In  terms  of   computational   complexity. 

Our   first   concern  in  this corrosion modeling  problem is   to  examine   the  dy- 
namics   of   a migrating,   spreading  strength distribution   function  f(S,t)   sweeping 
across  a  defined  endpoint  S'   as  shown   in  Fig.   IS.     A   general   treatment   of   this 
leads   to  a   formal   expression   for   the   time-to-failure  probability  density   func- 
tion.     The  strength distribution   is  taken   to  be  normal  with   time   dependent  mean 
and  standard  deviation.     Thus 

S |/r^yj exp  -I 
us(t) 

(62) 

The   unreliability  of  a  single   unit  or   the worn  out   fraction   of  a   population  of 
similar units  equals   the  area U(S',t)   under  the  strength distribution  to   the   left 
of  S'.     Therefore,   the worn  out   fraction   is 

S'- 

rS' 
U(S',t) f(S,t)dS 1 

/2iT 

-ps(t) 

ag(t) 
e-*?/2  d* (63) 

where   the   change  of  variable   $ = (S-u<0 /a,,    has  been  introduced.     Differentiation 
of  U(S',t)   under   the   integral   sign  (which   is  simplified   by  the  variable   transfor- 
mation  that   places   all  the   explicit   time   dependence   in   the  upper  integration 
limit)   yields  an expression  for  the  corrosion wearout   time-to-failure  probability 
density   function  fw(S:,t).     This  result  is 

f   (S',t) w 
dU(S',t) 

dt 
1 

/27 
exP(-(*')2/2) 

dt 
(64) 

where  4>'   =  MS').     Taking the   indicated  derivative   of   $'   we  can  express Eq.   (64) 
In  terms  of   the  time  dependent  parameters  Vg(t)   and Og(t)  °^   tne  strength 
distribution  f(S,t)   directly as 

fw(S',t) 1 

k/2ir o 
exp 

S' 
1-K^) dt 

S'-w« da. 

dt (65) 

The   required  normalization  l    fw(S',t)dt   =   1   is   apparent   from inspection  of Eq.   (64), 
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orrosion modeling  beyond  the   initial   formal  stages  one  needs 
dependence   of   the   strength distribution  explicitly.     This   is 

n  synthesis  under  the assumptions   that  a   linear  corrosion 
decrease  the  effective   radius   (and  therefore   load-bearing 

lly  symmetric  strength member.     The   load   bearing  capability 
ven  by  the   product   of   the material  tensile  strength and  the 
area.     Letting T  represent   the   tensile  strength and  r0,   c, 

adius,  the  corrosion  rate,  and  time   respectively;   the  strength 

=    TrT(ro  -  ctY (66) 



Kor   our   present   illustrative   purpose   r0 and  c  are   taken   to  be  normally  distributed 
while T  and  t  are   regarded  as  deterministic   parameters.     Standard   distribution 
synthesis  arguments   then   lead   to   the   desired   expressions   |ic;(t)   and os(t)   developed 
in  Appendix  D  and   displayed   as  Eqs.   (67)   and  (68). 

u_(t)     =     TTT((U     -yt)2+a2    + a2t2) (67) S v     r c r c       ' o o 

cj_(t)     =     *T(4(u     - v   t)?(a ?  + cj2t2)   + 2(o ?   + o?t?)?l*S (68) S vrcrc rcy 

o o o 

Taking T  and  t   to  be   distributed would  complicate   these  expressions  but  not 
particularly enhance   the   insights  being  developed   in  this modeling  exercise. 

At   this   point  we  have  obtained  a   general   expression   for  the corrosion wearout 
time-to-failure   pdf  and  displayed  explicitly   the   time  dependence  of   the  parameters 
appearing therein.     The  next   steps  are   to   take  the   required  time   derivatives, 
simplify   the  notation a   bit   by   introducing  auxiliary  parameters,   and  calculate a 
representative   group  of   numerical   results   for  graphical   display  purposes.     It   is 
convenient   to work   in  terms  of   the   fractional   strength S  defined  as 

V0) *T(U ?   + ar
?   J 

o o 
which   is  distributed  with   parameters u>^ = Us/us(0)  and a^  = 05/05(0).     Some 
additional   rescaling which  complicates   the  notation   slightly  but  simplifies   the 
arithmetic   is  also   implemented.     A decomposition of   the  problem appropriate   for 
numerical   evaluation   is   included  as Table   IV.     In Fig.   16 a   typical   time-to- 
failure  distribution  function   is  plotted  as  a   function  of   the  standardized   time 
variable z   (real   time   reexpressed  on  an   initial   mean  radius divided   by  mean 
corrosion  rate  basis).     The   time-to-failure  pdf   is  seen  to  be  skewed  to  the  right. 
Plotting the  abscissa   of   this   function  on  a  logarithmic   scale   almost   perfectly 
symmetrizes   the  distribution as  shown   in Fig.   17.     Thus,   the  log  normal  distribution 
Is  an   excellent   representation   of   the  results   of   this corrosion modeling exercise. 
The   time-to-failure  distribution was  numerically  integrated   to  form  its  cumulative. 
This   allowed  the  corrosion wearout  reliability   function   to  be  calculated   for  the 
model   as  unity  minus   the  cumulative   failure  function.     This   function  is  compared 
in  Fig.   18  with an  exponential  (random hazard)   reliability   function having the 
same MTBF.     Additional   graphs  are  presented   representing  the  effects  of  different 
process  endpoint   choices   (S')  and  corrosion  rate   dispersions   (oc/uc)  on  the   time- 
to-failure  and   reliability   functions   in Figs.   19 and 20.     In  the   cases  examined 
endpoint  choice  has  a more  pronounced   effect   than variability  of   the  effective 
corrosion  rate.     One  has   to   temper any conclusion  drawn,   however,   with  the  observa- 
tion  that   this   is  a Gedanken experiment  and  does  not  yet   represent  empirical   inputs. 
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pdf seems well represented by a log normal distribution as is often also the case 
for empirical corrosion studies.  The assumptions leading to these results are 
quite simple—a crisp definition of end of useful life, initial part radii normally 
distributed, and clustered iwrrosion rates also taken to be properly represented 
by a normal distribution.  For the examples considered one can summarize by noting 
that the time-to-failure distributions are strongly peaked and weakly skewed to 
the right.  In a real experiment, structured along the lines of the Gedanken 
experiment just considered, exhibiting similar dispersion of the corrosion rate, 
and yielding limited time-to-failure stochastic data, one might be har'l put to 
prefer a skewed description.  This is an argument for paying close attention to 
the statistical design of reliability evaluation experiments. 

5.5      Advantages, Limitations, and Pi fficulties 

What we have chosen in this report to call life prediction is essentially 
simply the application of stress/strength overlap methods to hardware serviceability 
problems.  With only the slightest change in viewpoint one would (perhaps more 
conventionally) call this probabilistic design for reliability.  In any event, it 
is the microscopic approach that we have referred to involving a description in 
terms of the stresses operative in a given situation and the ability of hardware 
to function under specified loading conditions.  The method is a very powerful 
and definitive one provided the detailed data requirements can be met.  Full 
distributional information relating to load stresses and component strengths is 
needed.  Clearly the scale of the problem for systems of even moderate complexity 
preempts the use of such a detailed approach.  Life prediction can be most 
beneficially implemented when just one or a few areas of particular concern can 
be isolated.  Even these situations will often require separate studies to 
characterize the failure governing stress and strength distributions.  Hopefully 
this stiuation will improve if practicioners heed the appeal of Kececioglu and 
Cormier'0 to publish distributional data.  Kapur'^ has observed that the problem 
can be simplified somewhat by concerning oneself only with the overlapping tails 
of typical stress/strength distributions.  It is these regions that dominate the 
probabilistic unreliability. 

In the sonar setting it may not be practical to attempt a full probabilistic 
description of the thermal, chemical, vibrational, and shock loading aspects of 
the exposed shipboard environment.  Focusing more narrowly on suspected troublesome 
areas such as the processes that threaten housing integrity might prove both 
tractable and beneficial, however.  A probabilistic approach has a particular 
appeal in that it represents a description emphasizing the distributional aspects 
of the reliability/life problem.  Even when dealing with rather basic structural 
materials, Bondi'^ has pointed out that it is precisely the dispersion of their 
physical properties that strongly impacts their usefulness. 

Probabilistic design methods have been under development on a rather broad 
front for twenty years or so.  Very little of this pretentious structure has been 
displayed in this report.  Thus the reader is cautioned not to underestimate 
either the labor or potential benefits of addressing sonar hardware problems 
probabilistically.  Input information is the key.  Given distributional data 
calculation cf stress/strength overlap has been reduced to quadrature.  Perhaps 
the most powerful numerical approach is Monte Carlo simulation.  Computer programs 

for this have been developed. 
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6.0 RKLIABILITY/LIFE DEMONSTRATION 

Interest   in  product   reliability   is multifarious.     Common areas  of  concern 
are  defining  realistic   goals,   upgrading an  engineering  design,   reducing  equipment 
life-cycle  costs,   coping with  state-of-the-art   performance,   and  evaluating 
deliverable   equipment.     Reliability   prediction  is  a   tool   in  the  hardware   improvement 
process.     But when   it   comes   to  obtaining   the most  definitive  kind   of   statement 
about   the   progress made,   some   form of demonstration   test   is   required.     A   general 
but   not   too detailed  discussion of   several   aspects  of   reliability/life  evaluation 
concerns   follows. 

6.1 Preferred Kinds  of  Information 

Equipments  can  be  evaluated   in  a  number of  ways.     But  ordinarily   the  primary 
concern  is   how well   or   for  how long will  the  hardware meet mission   performance 
objectives  under  the  conditions  of   use   intended.     In  one   sense  the most  definitive 
answer   to  this   kind   of  question  comes   from accumulating actual  field  service 
experience.     Often  such  information  is  unavailable  and   it   is  rarely   timely  for 
making  procurement  decisions.     Next  best  with  respect   to   determining the   reliability 
properties  of   interest   is  laboratory  testing  designed   to  substantially  reproduce 
field  conditions.     Here   timeliness may  (or may not)  be   improved  and questions   of 
cost  have   to  be  addressed   for  highly  reliable  equipment.     Applied  stresses may  be 
increased   to  decrease   test   time  or   the   number   of   units   required   to  be   set  apart 
for evaluation  purposes.     This   is  accelerated   testing  and  of  course   is   itself  not 
without  confounding  features.     Thus   full   interpretation  requires  one   to  relate 
real-time  and  accelerated   test   results  and   live with  the uncertainties  of   the 
description.     Against   this  background   of complications   some   fairly efficient 
means   of   evaluating  performance  and  accepting  or  rejecting production   lots  have 
been  developed.     The methods  are   termed  parametric  or  non-parametric   depending  on 
whether  or  not   a description  is developed   in  terms   of   (the  parameters  of)   a 
characterizable   distribution  function.     Some   examples  are   discussed  in  the 
following  sections. 

Regardless  of   what  approach  best  suits  a  particular application,   from a 
reliability   point   of  view we will  ask  whether  the   item  of   interest   is   still 
functional.     Is   it   failed  or unfailed  after  some  period  of   operation?     In 
characterizing   life we will  need  to know  when  the   failure  occurred  relative   to 
when operation  of   the  equipment  began.     Obviously,   then,   it will  be  necessary   to 
decide   specifically  what   excursions   from nominal  performance  are   to  be  considered 
tolerable  and  which  constitute   failure.     If   time-to-failure   information  is   to  be 
acquired,   monitoring  procedures  having an  appropriate   time   resolution must  be 
implemented.     Some   cautions  are   in  order.     Test  conditions must  be   similar  to use 
conditions   if  results  are   to  be   applied   directly   to  equipment   to  be   placed  in 
service.     Also   it   is   important   that   test  equipments  be  similar  (meaning as  closely 
alike  as manufacturing  procedures   allow)   to  hardware   Intended   for   field use   to 
allow valid   inferences   to  be made.     To achieve   the   latter  it   is desirable   to 
implement   some   scheme   to  select  an  unbiased  test   sample   from a   larger  homogeneous 
production  lot. 

Summarizing  the  essential  points,   time-to-fallure   information  is  the most 
useful   type  while   total   failures   in an  interval   represents  a   class   also  of 
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considerable   practical   importance.     The   former  are   required  for  the  coast ruct Ion 
of   full   distributional   reliability/life  descriptions.     Total   failure  data  permit 
the  specification  of  a   point   reliability estimate  (itself  distributed as we  have 
seen)  but   shed  almost  no   light   on   time-to-fallure distributions  of  more   than  one 
parameter.     A  point   reliability  description   fleshed   out   in  terms  of   producer and 
consumer  risks   is  usually considered  adequate   for acceptance   testing.     A distribu- 
tional   description   is   to  be   preferred  for   failure mode   diagnostics,   prediction 
model   development,  and  comparison with  probabilistic  design  or  physics-of-failure 
8tudies. 

^•2 Inferring Distribution Parameters 

Often  one wishes   to  describe  a   reliability  problem  In  terms  of  a mathematical 
model.     The   properties   of  a   few  important  models  were   discussed earlier  in  the 
report.     It   is desirable   that  a  particular model  be  advanced  on   the  basis  of 
physical  arguments.     Whether  in  practice  a model  Is   introduced systematically in 
this  way  or  on  a more  pragmatic   basis,   a modeling  exercise  ultimately  involves 
choosing the model  parameters   that  best   represent  the  available  data.     Several 
methods   for  this   such  as matching  moments,   probability  paper  plotting,  or  standard 
regression analysis  are  available.     The   latter   two  approaches are  discussed 
further   in  the  next   two  sections. 

6.2.1 Plotting Methods 

In  estailishing  or making use  of  correlations  between experimental  data 
and  the   parameters   of  an  associated physical  model,  It   is   often convenient 
to   introduce  variable   transformations   to  linearize   the model. The model  is con- 
firmed   if   the   transformed   data  plot  as  a  straight   line  on   linear coordinate 
paper.     Fitting  the best  straight  line  to  the data can be done visually  (avoiding 
numerical   regression analysis).     Furthermore model  parameters  can  be   inferred 
from  the   slope  and   intercept  of   the  best-fit  line making use  of   all  the data at 
once.     This gives  roughly  equivalent  results  and  is  more  efficient  than  statis- 
tically  processing   the various  point  estimates  separately. 

Linear  curve   fitting  can  be   further  streamlined   from the   data  analysts' 
point  of  view.     To  do  this  one  builds   the  necessary mathematical   rescaling 
directly  Into  the  coordinate  axes   of   the  graphical   display.     For  example,  con- 
sider  the   two-parameter exponential   reliability model: 

*    =    e-*(t^   • (70) 

Taking natural   logarithms   yields 

In R    =     -At +Xy   . (71) 

Or   equivalently 

In (1/R)     =     Xt -\y, (72) 

Equations   (71)  and  (72)  are   linear   in  the  standard  slope-intercept   form y = mx +  b 
with  Independent variable   t  and  dependent variable   InR or   ln(l/R)   =  -InR.  Thus 
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InR  plots   linearly on   linear  coordinate   paper  and  R   itself   plots  as  a   straight 
line  o'i  standard  semi-logarithmic  paper.     There   remain  some   provisos  associated 
with   the  use   of Kqs.   (71)  or   (72).     The   reliahility R  is  not   a   directly observable 
quantity  but  must   be  estimated   on   the   basis  of  observed   failures  among  similar 
equipments.     We will   digress   to  explore  a   preferred  approach   for  this. 

Reliability  data  requirements  are  discussed   in  Section  8.3.     Anticipating 
the   character   of   that   discussion,   imagine   that  we  are  blessed with a   set   of   time- 
to-failure  data   to  be  analyzed.     Times   to   failure may  be  grouped   to  generate  a 
frequency histogram or  ranked   to  synthesize  a   representation   of   the  cumulative 
time-to-failure  distribution  of   the  population  from which   the  sample was drawn. 
Johnson14 has   pointed   out   difficulties   in   inferring  distributional   properties 
using  the   former approach  such as  sensitivity   to  class  interval  choice when 
dealing with   small  samples.     Further   in   a  very   pretty  logical   exposition14  he 
has developed  the median   rank  method   of  organizing ordered  failure   data.     This 
approach   has much   to   recommend   it   in  connection with  best  characterizing  the 
cummulative   distribution   representing the   parent   population. 

Briefly   paraphrasing  some   of  Johnson's14   introductory discussion we  observe 
the   following:     Consider  that   a  sample   of  N   units  has  been   selected  (presumably 
randomly)   from a   larger  population  and   tested   to  failure.     The  prerequisite   for 
constructing a   cumulative   plot   is   to  appropriately rank each   failure.     Thus,   if 
the  entire  population were   tested,  each  of   the N  subset   failures  would have  a 
definite   fraction   of   the   population   failing ear lier.     Correct  specification   of 
this  quantity   for a  given  observed  failure would  be   its   true   rank within  the 
overall   failure   distribution.     Since   the   true  rank  is  ordinarily  unknown,  the 
best we  ran do   is  estimate   it.     The  estimate   that  has  equal   probabilities  of 
being  too high  and   too  1ow is  called the median  rank.     Johnson1     shows  that  the 
true  ranks   of ordered   failures  within  a   subpopulation are  beta  distributed and 
that   the median  rank  MR  of   the   jth   failure  among N  samples   tested   is  obtained 
from  the  cumulative   binomial   distribution  (partial  binomial  sum)   via 

N! 

kio k! (n"k)! (MR) 
N-k 

(1 - MR) 0  <   MR <   1 (73) 

Equation  (73)   is   of  order N   in MR  but  has   uniquely one   root   in  the   interval  0  to 
1.     Tables  of  median  ranks  as well  as  other  percentile  ranks  have  been prepared 
by J.   S.   White  and  incorporated  in Ref.   2.     Some   rank distributions  and their 
median  ranks  are  displayed   in Fig.   21   for a  sample  of   10 units. 

Let  us  return   to  the  construction   of   probability  plotting paper.     Conven- 
tionally and  for  the  reasons  discussed  some   function of   the  cumulative   time-to- 
failure   distribution   is  plotted  as  a   function   of   time,   rescaled  to yield a   linear 
description.     These  plots  are  arranged   to have  positive   slope.     Consider  the 
Weibull   reliability   function as a  starting point   for  example 

R exp •ra 
Y)ß (74) 

Taking  reciprocals  and  then   taking natural   logarithms   twice  yields 

lnln(l/R)     =     ßln(t-y) -ßlnn. (75) 
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Or since R = 1 - U and the median rank MR is a preferred estimate of the 
cumulative failure function U, Eq. (75) becomes 

In In 1  1 
1 -MR (ln(t-y)] - (ßlnn). (76) 

Equation  (76)   is   linear  (in  the   rescaled quantities)   in   slope-intercept   form. 
Weibull  probability   paper   is  constructed   by building  the   required   scaling  into 
the  coordinate   labeling  so  that MR  plotted   versus   t_Y   yields  a  straight   line 
directly. 

A  variety  of  Weibull   papers  as  well  as  probability   papers   for  other 
distributions  are  obtainable.     Ford Motor Company and  General Motors  have 
both developed Weibull   papers   for  internal  use.     Probability   plotting  papers 
are  commercially  available   from a   company  that   identifies   itself  by  the 
acronym TEAM  (Technical  and  Engineering  Aids   for Management).     A catalog 
of   their  special  purpose  graph   papers   is   available  on  request.     Contact 

TEAM 
P.  0.   Box 2 5 
Tamworth, N.H.  03886 
Telephone:  (603)323-8843. 

More  detailed  descriptions   of  the use   of   probability   paper are  given  in 
References 2,   15,   and   16.     The  latter document  discusses  papers  developed  by 
R.   A.   Evans.     Most   probability   papers  label  the  ordinate   axis  as  "percent   failed" 
or  "percent   failure"  while  observed  failure  times are  plotted  as  abscissas.     The 
median  rank has been  discussed  as  a   preferred  estimate   of  the   percent   failed  and 
thus  can be  used  directly   in probability   plotting.     Evans*     recommends   the  es- 
sentially  equivalent   approach   of   plotting each datum  twice  at  ordinates   r/n and 
(r-l)/n where  the  notation  refers   to  the  rtn  ordered  failure among  n  items 
tested.     These   two   points   fall  on either  side   of   the  corresponding  median  rank 
and,   of  course,  are  easy   to  calculate.     Both methods  are  applicable  even  if 
failures do  not   occur   for   all  n   items   tested  (censored  test). 

Some   facsimile   time-to-failure  data  including  the  specification of  median 
ranks  is  displayed  as Table V.     This   information  is   shown  plotted  on Weibull 
probability   paper  in Fig.   22.     Three  curves  are  shown  representing  different 
choices   of   the   position   parameter y.     Fixing y   is an  iterative   procedure.     If 
no position  parameter  can  be   found which  linearizes   (approximately—data  are 
usually   scattered)   the Weibull  plot,  one  concludes  that   the   times-to-fallure 
are not Weibull  distributed.     If  a   linear Weibull  plot   is  obtained,   the  shape 
and  scale   parameters  ß  and  n are   found   via  simple  graphical   procedures   that 
vary   slightly depending  on  the  particular  paper  employed.     Discussion of   the 
uncertainties   to   be  associated  with  the   parameter  values  obtained   via   probability 
plotting   is deferred   to  Section 6.3. 

6.2.2 Curve  Fitting 

In  the  previous  section we  have  considered   inferring  distribution parameters 
using  probability  plotting and   visual   curve   fitting.     This   is  a  convenient  and 
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widely accepted  approach   to  standard   regression  analysis.     When  appropriate, 
regression analysis  can he  carried   out with greater  precision using  numerical 
methods.     We will   explore   this   avenue  here   for  utilitarian  reasons  as  well   as 
to  develop   further   insights   in   the  reliability/life  context.     Numerical   regression 
analysis   is  commonly called   curve   fitting or   least-squares  curve   fitting and 
is widelv discussed   in  texts dealing  with  applied  statistics.     The  specific 
approach   to  the   subject   that  we will   follow  Is developed   by  Bevington'   . 

Suppose   that  we  are   dealing  with  an   experimental   situation  where   a   dependent 
variable  y   is  linearly  related   to  an   independent  variable   x  via 

v(x) a0 +  bQx (77) 

The  quantities  a0 and   b0 are   the   true   (but   unknown)   parameters   of   the   linear 
model  which we would   like   to  estimate   from a   set  of   paired   observations   (xj,Vi). 
To  make   the   example   specific   let   us  assume   that   very  accurate   observations  of 
the  xj   are  available while   the yj   are  normally distributed with  standard  devia- 
tions 04   about   the   true   (but  unknown)  values  y(x^).     The  probability   that   the 
1        measurement  will   yield   a  value   y^   is   then 

P. 
l 

1 

I /2n o. 
exp 

yi y(x.) 
(78) 

Provided the y^ are independent the probability of making an entire set of N 
observations of y^ at different x^ is given by a product of N factors of the 
form of Eq. (78). 

N 

P(£ •V  = n 
i=l 

(79) 

We   cannot  actually evaluate  Eq.   (79)  because we  do not   know the   true   linear 
model   parameters  aQ  and  bQ.     However,   we   can  rewrite Eq.   (77)   in  terms  of 
estimates  a and  b  of   these  quantities  as 

y(x)     =     a +  bx (80) 

Using Eq. (80) In Eqs. (78) and (79) yields the probability that the set of N 
observations is associated with the estimated values of the coefficients a and 
Thus 

P(a,b) 
1 

j = l I ^2vo) 
exp - 

1 N 

i=l 

yi 
a - bx , 

(81) 

The   principle   of  maximum   likelihood  asserts   that   the   set   of measurements 
actually obtained  experimentally   is more  likely   to  belong  to  the  true  parent 
distribution   than   to  any  similar  distribution with  different  coefficients. 
Thus   the  best  estimates  of   the  parent  parameters  are  obtained  by maximizing  the 
probability  given   in Eq.   (81).     This  is  accomplished  by minimizing the  argument 
of   the exponential,  or  equivalently   the  function 
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i=l 
-—{y^a-bxj (82) 

Equation  (82)  can  be minimized   by requiring that   its   partial   derivatives  with 
respect   to   the  parameters  a  and  b simultaneously  vanish» 

8* 7    V        I      l       [ K (83a) 

3b l .l, 
i=l 

T (yi _a -bxi) (83b) 

Equations   (83)  are   two   linear,  simultaneous   equations   in a  and   b which  can  be 
written more  suggestively as 
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where  the   sums  are  on  i   ranging   from   1   to N.     Equations   (84)  are  readily   solved 
using  determinants  yielding 
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Equations  (85)   provide an analytical  scheme   for  determining best  estimates 
of   the  slope  and   intercept  parameters  of   the  experimental  model  given  by Eq.(80). 
Formally one  seeks  the  same  kind   of   solution  graphically using probability 
plotting  methods.     To  comment  on whether  the   two  approaches  are  equivalent  or 
not,  one  needs   to  examine  both  a   little more  closely.     The  assumptions  we  have 
made   in constructing   the   least-squares method are: 

1.     The  xj   values  are   dispersionless   (without  error). 
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2. Multiple  values  yj  observed at   the  same  xj  are  normally  distributed. 

3. The  y^  observed  at  different  xj are   independent   ( uncorre La ted). 

4. The   regression   line   is  centered  on   the mean  of   each  normally distri- 
buted y £. 

5. The   statistical  weights   l/i/   of   each  observation need   to  be  specified. 

f>.     The maximum   likelihood  concept   Is  reasonable. 

These  statements  are,   in  fact,   appropriate   in a variety  of mear'irement  situations. 
The  approach  can  be made  more   general   or  more  specific.     For   example   if   the  x^ 
are   themselves  distributed,   their  uncertainties  can  be  reflected  into  the  y- 
coordinates   through   the  slope  of   the  regression  line  and  appropriately  taken 
into  account.     A simplification   often  occurs   if   all   data  are   taken using the 
same   instrument   in  the  same way.     In   this  case,   the  standard  deviations oi   may 
all   be  the   same   so  that   all   data   points  are  given  the   same  statistical weight. 

Against   the  properties  of  common  forms   of   least-squares   fitting   let  us 
look  back at  the  nature   of   the   probability   plotting  method   discussed  in 
Section 6.2.1.     <Ae might  comment  on  each  of   the  above  assumptions   individually: 

1. In   probability  plottiig the   independent   parameter   is   time   directly 
or  some   function of   time   (such as  lnt).     It   is   treated  as disper- 
slonless  althoi $\  in any  given  experimental  realization  one must 
specify  the  precision of   the  time-to-failure   information developed. 

2. In   probability  plotting the  ordinate  values  are   typically  ln(l-MR)-! 
or   lnln(1-MR)-^.     As  we  have   seen  true   ranks  are   beta   distributed. 
As   a  practical  matter  the  above   functions may be  roughly  normally 
distributed   but   they are  not   expected   to   be  rigorously normally 
distributed. 

3. Median  ranks  are  preferred  estimators  of  order  statistics   in  random 
samples   from a   uniform  distribution.     These  order  statistics  are 
not   independent   (see,   for example,   Section 2.40 of  Ref.   17).     Thus 
the  ordinate  values  used  in  probability  plotting are  not   uncorrelated. 
This   is  probably   the most   serious  obstacle   to   the   realization of  a 
straightforward  and satisfying interpretation   of   time-to-failure 
data. 

A.     In  probability   plotting we  are  dealing with  a visual  fit   to   the  data. 
We  are  not  in a   position   to  comment  very  specifically on  how the 
ordinates  are  distributed  or  the  regression  line  is  positioned. 

5.     The median  ranks  used in   probability  plotting  represent  different 
beta  distributions.     A statistical weight  reflecting  fhe  differing 
dispersions  of  different  ordered  failures  should  be  constructed. 
No  such  adjustment   Is made   in ordinary  probability  plotting.     Another 
shortcoming is   that   the   functional  rescaling  employed  in construct- 
ing  probability   plots  affects   the  parameter uncertainties  as well 
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as   the   parameters   themselves.     Thus   the   same   transformations   should 
be  used   to   reconstruct   proper  statistical  weights. 

6.     Maximum   likelihood   ideas  are   felt   to  be   very  appropriate   in   a  variety 
of   settings.     However,   we  have  already   flagged  several   anomalies  be- 
tween  standard   least-squares   fitting and   probability   plotting.     The 
departures  seem  to be  sufficient   to  suggest   that   the adequacy of 
visual  fitting  be   tested   oiher  than  on   the   basis   of  any relationship 
to  maximum   likelihood. 

We  have  called attention  to a  number of  ways   in which  probability  plots  fail 
to  rigorously  meet   the   requirements  associated with  standard   least-squares 
fitting  schemes.     Of  course   these  objections  are  generally  recognized  and  serve 
as   the  basis   for  placing  probability   plotting in   proper   perspective.     Thus   it 
is  said   that  probability   plotting  does  not  have  a  definite  statistical   inter- 
pretation.     The   technique   is  recommended   for   rapid   visualization  of  data 
trends.     It   should  be  used   to  discard  models   that  are  conspicuously   inappro- 
priate   but  not   be   relied  on   to  select  the  best model  from several   apparently 
good  ones.     The Weibull  model which   is  very   interesting  because  of   its versa- 
tility  is  also   difficult   to  determine well   via  the   probability  plotting approach. 
That   is,   the  parameter  values  obtained   tend  to  carry  large  uncertainties. 

Least-squares   fitting  schemes  can  be   tailored   to  more   directly deal  with 
some   of   the  features  of   the  probability   plotting  problem.     For example   the  need 
to  rescale  statistical weights  can be  obviated  by  fitting  to a   cumulative 
distribution directly rather  than  to  a  function  linearized   through  coordinate 
transformations.     Bevington  discusses  least-squares   fitting  to an arbitrary 
function  in Chapter  11   of  Ref.   17.     Equation (82)   is generalized  to 

,2     - livfiH-y^)2}- (86) 

where y(x) is an arbitrary function of x and a set of n parameters ai. The 
function y(x) may be expanded in a Taylor series. Retaining terms to first 
order  in  the  parameter  increments &a^,   Eq.   (86)  becomes 
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where y0(x) is an initial estimate of the desired fitting function.  Requiring 
as before that the derivatives of Eq. (87) with respect to 6a* simultaneously 
vanish yields for k=lI...,n 
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Equations   (88)  are  a   set   of  n  simultaneous,   linear  equations   in  6aj,  the 
corrections   to  the  initial  parameter estimates.     Since Eqs.   (88)  are  only asym- 
totically correct  as  y0(x)  approaches  the  true  regression  profile,   iteration 
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is required 
methods 

Equations (88) are solved using determinantal or matrix inversion 
6a; are used to construct an improved test function 

fia,).  The process is repeated until X  reaches a stähle yo(x,   aj)    >  yo(x,   a.   + 
minimum.     Convergence   is   rapid   usually   requiring  only   three   to   five   iterations. 

A  full   Mown   iterative   least-squares   fitting  program  for matching the 
Weibull   cumulative   distribution   to median   rank  versus   time-to-failure  data  is 
presented  as Appendix K.     The   program is  written   taking the  a   priori   statistical 
weights   l/o-*"   =1.      It    includes   calculation  of   the  uncertainties   to   be   associ- 
ated  with   the   final   fitting   parameters   based   on   the   error  analysis  developed   by 
Bevington'   .     Although  the   fitting  program is   set   up   to   treat   the Weibull 
cumulative  distribution,   its  use   is much   less  restricted.     The   reader may  use 
Appendix  E   for   other   curve   fitting   problems   simply  by   substituting another 
fitting  function and   its   first  derivatives with  respect   to  each  of   the  parameters 
i nvolved. 

Unfortunately   improved  curve   fitting  does  not   solve  all   the  problems 
associated with   interpreting time-to-   lilure   information.     Ascertaining the 
parameters   of   time-to-failure  distributions   raises   general   questions   in   the 
theory  of  order  statistics  and   is  discussed  in   greater   detail   in Chapter  5  of 
Ref.   11.     This   source   refers   in particular  to  an   impressive   series  of   papers  by 
N.   R.   Mann   dealing   largely   with   the Weibull   model. 

6.3 Quality  of  Description 

The   plotting  and  curve   fitting methods   just  discussed   relate   to   the  question 
of   estimating the   parameters  of  cumulative   time-to-failure   distributions   that 
best   repres   nt   observed,   ordered   time-to-failure  data.     When  these  results  are 
obtained,   one   necessarily   inquires   about   their  quality or   dispersion.     A   couple 
of  ways  of   addressing  this kind  of   question  are  discussed   in  the  next   two 
subsections   of   the   report.     In  reliability  studies   the  conclusions  one   draws 
from  this are  usually not  vt   y  satisfying  owing   in  part   to   limited  data  but 
mostly   to  the   distributional   aspects   of   the   problem.     Thus   the   parameters   of 
interest  exhibit   substantial  uncertainties.     This  has  nothing  to  do with  the 
power or  efficiency of  regression analysis   per  se.     Nevertheless   it   is  a 
frustration  to   those   interested   in  characterizing hardware   reliability. 

6.3.1 Dispersion Estimates 

Evans'" in connection with the use of probabi 
constructions for estimating the errors to be asso 
regression analysis parameters. Actually his desc 
of one of the statistical goodness-of-fit tests di 
Bevington'' discusses the estimation of uncertaint 
obtained by curve fitting. These are of course re 
of-fit" obtained in the analysis. But there is a 
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sort ion wo pursue the error analysis line of reasoning briefly, 
points out the error °a: associated with a fitting parameter a, 

experimental errors Oj collectively, according to the weighted sum 

o ' 
a. 

N     r        /3a. 

ill pU, (89) 

where  v.   is   t .-th he   i        datum  of  N   total.     Using  this   result   the   squared   uncertainties 
associated  with Eqs.   (85a)   and   (85b)   (two-parameter   linear   regression)  are 

1 r iu*?>°D (90a) 

and 
1   - 

I/a i 
(90b) 

where L is gi 
order linear 
Bevington'' c 
the change in 
squares fitti 
parameters. 
uncertainties 

ven  by Eq.   (85c).     The method  is  readily  generalized   to  higher 
regression models  and   to  curve   fitting  to an arbitrary  function, 
onstructs   the   logical   extension   to  the   latter  case   by considering 

a   single   parameter which  produces   a  unit   increase   in  the   least 
ng statistic  X     [Eq.   (86)]  minimized  with  respect   to  the   other 
All  of   these  cases  are  then  neatly  described  by expressing  parameter 

in   terms   of   the  error  matrix   e   via 

o *•      =     e . . 
3j n 

(91) 

The error matrix is defined as  the   inverse  of   the  curvature matrix (in   fitting 
parameter   hyperspace).     Thus 

where   the   elements   of  a  are   given   by 

<•    >jk  • (92) 
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If   the   data   point   uncertainties  o^ are  unknown,   they  can   be  estimated   from the 
overall   data   record   itself   via 

N-n I 
1-1 

(y±- y(xjl) (94) 

Equations   (91)   through   (94)  are  used   in Appendix E   to  estimate   the   regression 
parameter   uncertainties. 

6.3.2 Ooodness-of-Fit  Tests 

C.oodness-of-fit   tests  are   structured   to  provide  some measure  of   the   like- 
lihood  that   a  given  set   of  observations   (sample   test   results)   in   fact  belong 
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to  some   specified   distribution.     The   distribution   parameters  may  be  given  a 
priori   or  obtained   from  analyzing   the   data   record   itself.     Two   of   the   better 
known  goodness-of-fit   tests  are   discussed   in   this   section.     These  are   the 
test   developed   by   Pearson18   and   the Ko lmogoroff-Smirnov   test.     References 
11,   19,   and   20 all   provide  chapters  on  goodness-of-fit  or  statistical   infer- 
ence   tests  with   the   latter   two   being  most   appropriate   for   our   present   purpose 
All   of   these   sources   identifv  additional   reference material.     Kececioglu" 
gives  a   particularly   lucid   description   of   the   practical   application   of   these 
two methods. 

The   X'    test   is   based   on   the   proposition   that   the   statistic 

(95) 
k      (0    -£.)"' 
r 11 

X'     =       L 
i=l E. 

l 

is approximately X2 distributed with v •  k-m-1 degrees of freedom where 

k  =  number of class intervals into which the data are grouped 

m =  number of parameters of the test distribution obtained from 
the data record itself 

0. • observed event frequency in the i   class interval 

F.. =  theoretically expected event frequency in the i   class interval. 

Roughlv speaking the preferred number of classes is 5, 7, or 9 depending on 
whether the total number of observations is of order 10, 100, or 1000 respectively. 
One also prefers that each class interval contain at least 5 events.  Class 
intervals need not all be the same size in event parameter space (time, cycles 
to failure, etc.) to accomplish the latter.  A number of examples of grouping 
data and setting up the test are provided in the references cited above. 
Ultimately one calculates the test statistic according to Eq. (95) and compares 
it to tabulated percentile values of the chi-square distribution.  One can 
write the probability statement 

Y  2 

X(l-a),^J 

y 2 

f(OdX
2. (96) 

0 

c 

Equation  (96)   states   that   if   the   inequality   (equality;   is   satisfied,   the     "iginal 
test  hypothesis   is  confirmed  at   the a  level  of   significance.     For example  if 
a =    0.05  and  v   = 4,   there   is  only  a   5%   probability  that   the   test  statistic 
X2  will  exceed   the  critical   value X2   =   X?o.95,4   =  9-49   [note  some   tables 
give  X2

a v   rather  than   X?(1.a),vl   for  a  given'set   of  observations   for which  the 
initial   distributional   hypothesis   is  correct.     Occurrence  of   the  outcome   x    >   x£ 
is considered  unlikely  (at  the  specified   risk or   significance   level   a)   and  is 
therefore   the  basis   for  rejecting  the  original  hypothesis. 

As  an  example   let   us   test  the   proposition  that  the   time-to-failure  data  of 
Table V  belong   to a   two-parameter Weibull  distribution with parameters  ß  = 2.3 

45 



and   n   =   10,000  hrs   as   obtained   from   Fig.   22.      Implementation   of   the   X?   test 
is  shown   in Table  VI.     Notice   that  we  have  contrived   to  have  5  events  per 
class   interval   bv  choosing  unequal   class   intervals.     Having  only  20   data   points 
to work  with   is  still   a   little  confining  and  allows  only  A  classes   in  connec- 
tion  with   the   former   choice.     As   we   see   from Table   VI   the   two-parameter Weibull 
model   is   not   rejected   at   the  5%   significance   level. 

The   reader   is   referred   to   the   literature   for  additional   operational   level 
information  associated  with   implementation  of   the  X'    test.     To  summarize,   the 
essential   elements   of   the  method  are: 

1. Select   the  distribution  (pdf)   to  be   tested. 

2. Choose   the   desired   level   of   significance  a. 

3. Specify   the   parameters   of   the  distributional   hypothesis   (perhaps   bv 
fitting  the   data   itself). 

A.     Decompose  event   space   into  class   intervals. 

*>.     Tally   the  observed   data   by class   to  obtain  the  observed   frequencies. 

6. Calculate   the   expected   class   frequencies   (by   taking   differences   of   the 
cumulative   of   the   test   distribution   evaluated  at   the   class  boundaries). 

7. Form  the   test   statistic   X2   [see Eq.   (95)]. 

8. Calculate  the   number  of  degrees   of   freedom  for   the   problem. 

9. Compare   the   test  statistic  with  the  critical   value  obtained   from  tables 
of   the  X^-distribution. 

The Kolmogoroff-Smirnov   test   statistic   d   is   the  maximum  absolute   difference 
of   two  cumulative   distribution   functions   for   some  observed  set   of  values   of   the 
independent  variable  x.     Thus  for  n  observations 

where 

d     =    max|S  (x  ) -F(x  )[, (97) 
n    r r     ' 

S„(JO  •  observed cdf at r  failure 

F(xr)  = hypothesized cdf at x • xr. 

Equation (97) is asymtotically distributed as^2 

00 

lim     p(d  >   C//H)     =     2    I    (-l)m_1 exp(-2m?C2}   . (98) 
n •« m=l 

This   result   together with  exact  calculations   of   the   probability  P(d  >  C//n)   for 
small   n allow  tables  of   critical   values  of   the Kolmogoroff-Smirnov  test  statistic 
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to be constructed.^''^   This information is now also commonly reproduced in 
textbooks treating statistical inference and statistical methods for reliability. 
In evaluating Eq. (97) the observed cumulative distribution at the rtn failure 
is estimated by the rank fraction 

5n(xr)  =  r/n ' (99) 

Or   if   the   data  are   organized   into n   groups   (rather   than   n   groups   of   1), 
Kq.   (99)  generalizes   to 

S   (x     )     =     r   /n , (100) 0     rg g u     ' 

where   the  m  quantities   rp are   the   failure   order   numbers  corresponding   to   the 
upper  group boundaries.     As was done   for  the   X     test   the Kolmogoroff-Smirnov 
test   statistic   is  compared  with   tabulated  critical   values corresponding  to  some 
stated   level   of   significance.     Application  of   the   test  again  to   the  data  of 
Table V   is  displayed   in Table  VII.     We  conclude  as  before   that   the   two-parameter 
Weibull  model   (ß  = 2.3,   n  =   10,000  hrs)   cannot   be   rejected. 

Again we might   summarize  the   basic   features   of   the  Kolmogoroff-Smirnov 
goodness-of-fit   test. 

1. Select   the  cumulative   pdf   to   be   tested. 

2. Choose   the  desired significance   level. 

3. Specify   the  parameters  of   the  distributional   hypothesis   (preferably 
not  by   fitting the  observed   data). 

4. Tabulate   the  observed  data  by  rank   fraction  to  obtain  the  experimental 
cumulative   distribution. 

5. Calculate   the  corresponding  expected  cumulative  distribution values 
for   the   test   hypothesis. 

6. Take  differences  of   (4.)   and   (5.)   and   identify  the Kolmogoroff-Smirnov 
test   statistic. 

7. Compare   the   test   statistic with  tabulated  values  and  draw a  conclusion. 

Some   provisos  associated  with  the use   of  the   two  goodness-of-fit   tests 
described   in  this  section  of   the   report  are: 

1. The  X     test   is   preferred   for  evaluating  discrete   distributions  while   for 
continuous distributions   one  should  favor  the Kolmogoroff-Smirnov  test. 

2. The  X     test   is   suitable   for  situations  where   the  values  of   parameters 
used   in  specifying  the   test  hypothesis  are  obtained  from  the  same  data 
record  as   is  used  in  the   test   itself. 

3.     The  conditions  of   item  (2.)  compromise   the Kolmogoroff-Smirnov  test. 
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4. The   data   grouping   required   In   the   X'    test   precludes   its   use  with   very 
small   samples. 

5. There  are  no  restrictions   on  applying  the Kolmogoroff-Smirnov  test 
in   small   sample   situations. 

6 .4 Testing—Context  and Cost 

Much  of   this   report   thus   far has   related   to  structuring  the  analytical 
machinery   for   interpreting  reliability/life   information.     Testing  is   simply  the 
systematic   exercising   of   equipment   to  yield   failures   from  which   reliability 
inferences  can  be  drawn.     Thus  given  copious   amounts   of   this   kind   of   information 
we   can construct models  and  evaluate  their  parameters.     Often   this   takes   the 
form  of   trying  to  ascertain  whether  contractural  obligations  are   being  met   in 
connect ion with  a   particular  procurement.     This   latter kind  of  evaluation   is 
called  acceptance   testing.     In  acceptance   testing one   is concerned with  the 
tradeoff  problem of  being  fair  to  both consumer and  producer while at  the  same 
time   being  reasonably   precise  about   discriminating  between  superior  and  inferior 
equipment.     The  situation  is  usually  quantified   in  terms  of   the  producer's   risk 
a,  the  consumer's   risk  ß,  and  the   discrimination  ratio  k.     The   producer's  risk 
is   the  probability   that  equipment  of  adequate quality  will  be   rejected  by  the 
test.     The  consumer's  risk  is   the   chance   the   buyer  takes   that  actually  inferior 
hardware will  be   judged  acceptable.     The  discrimination  ratio   is   the  quotient 
of   the  nominal   or upper   level   of  desired  performance   (MTBF   for  example)  and  the 
minimum acceptable  or   lower  performance   level.     These  quantities  are   identified 
in Fig.   23   which  is  one   form  of   the   operating  characteristic   (OC)   curve which 
shows   for  a  particular underlying  distribution  the  probability  of   passing  an 
acceptance   test  versus  the   true   performance  attribute   of   the   equipment   being 
evaluated.     The  detailed  shape  of   the OC  curve  depends   on  the  sample  size  and 
the   level   of   performance  demanded.     Reduced  consumer  and  producer  risks  and 
higher  discrimination  (smaller k)   require more   testing. 

In   general  the  statistical  interpretation   of  reliability  tests  can  become 
quite   involved.     One  needs   to  consider whether  the   test   is  time   terminated, 
failure   terminated,  censored,  or  uncensored  and  whether  the   data  obtained are 
time-to-failure,   failures   per   interval,  or  total  failures   in  total   time 
information.     Does one  know in  advance   from what  distribution  the   sample  is 
drawn  or   is  this   to  be   inferred  from  the   test?     Our   purpose   is  not   to  explore 
all   of   these   avenues  here   but   rather   to   focus on certain economies   that  have 
been developed.     A  great deal   of  modern acceptance   testing  is  based  on  the 
pioneering work of Abraham Wald"  in  the  area  of   sequential  testing.     In  this 
case   for a  specified  underlying  distribution  one  establishes  an open ended   test 
plan and  keeps   track  of  a   probability ratio  statistic   relating  to  the   probabil- 
ities   that   the  observed   number  of   failures  belong  to a  realization of   the 
upper  and   lower   performance   limits.     The  accept/reject  decision  is  based  on 
the  behavior  of   this  statistic  and  such a  test   is  called  a  probability  ratio 
sequential   test  or  simply a  sequential   test.     Sequential   testing is most   fully 
developed   for   the  exponential   case.     A  variety  of   test   plans,   operating  charac- 
teristics,  and   expected  test   time   characteristics   for  this  situation are   dis- 
played   in  Ref.   26.     A  typical   format   for  sequential   testing  sampling plans  or 
decision making plots  is   that  shown  in Fig.  24.     Cumulative   failures are  plotted 

48 



versus cumulative equipment operating time. Migration of the stepwise plot 
line outside the "continue testing" region results in an accept or reject 
decision being reached.  The truncation boundaries t„ and r„ are due to 
Epstein." 

Additional details concerning the design of a sequential test plan tailorec 
to a particular application are presented in Ref. 2.  We do not elaborate on 
this here because we are ultimately more interested in making actual hardware 
reliability improvements than fine tuning the evaluation process for the 
exponential model.  Sequential testing has much to recommend it, however. 
Wald^' has shown that a sequential plan has an average risk no greater than a 
test where the sample size is chosen in advance.  On the other hand good units 
are promptlv accepted while bad units are rejected efficiently in terms of the 
test time required to make a decision.  Reduced time and expense- associated 
with testing is a principle advantage of the sequential approach.  Not surpris- 
inglv (though perhaps unfortunately) the greatest test time required is asso- 
ciated with coming to a decision when the true reliability is close to the 
design objectives (upper and lower test limits).  While the economies of sequen- 
tial testing are real, the amount of time that must be invested in hardware 
evaluation is still significant.  Inspection of the test plans of Ref. 26 
shows that the cumulative test time required ranges typically from 2 to 20 
times the MTBF value being demonstrated. 

Ir the case of routine acceptance testing one often has well developed 
expectations concerning how the test should turn out.  This may be based on 
experience with similar equipments previously evaluated.  In such cases it is 
possible to realize an additional reduction in required test time by using the 
celebrated and controversial methods of Bayesian inference.  This subject area 
has developed around the conditional probability theorem first established by 
Bayes28 over two hundred years ago.  For the reader to whom Bayesian inference 
is new, Ref. 29 is a suggested point of departure.  Reference 29 is a special 
issue of "IF.F.E Transactions on Reliability" devoted exclusively to Bayesian 
inference.  Most of the papers have a review orientation.  One of the advertised 
benefits of Bayesian theory is that it allows subjective or personal preference 
kinds of inputs.  There is continuing dialogue concerning whether this is 
permissible in science, how it should be done, and what Bayesian forms are 
appropriate in trer'ing reliability problems. 

Following Refs. 11 and 30 Bayes theorem may be stated as 

P(B|A )P(A.) 
P(A.|B)   =   — i i , (101) 

I     P(B|A.)P(A ) 
i=l x      x 

where in the reliability context the elements of Eq. (101) have the following 
interpretations: 

Aj      a set of mutually exclusive and exhaustive (for B) hypotheses or 
belief statements 

B       an event or piece of evidence that relates to the truth or credi- 
bility of the At 
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P(Aj)   elements of the prior probability distribution, that is, the 
probabilities assigned to the hypotheses Aj before evidence B 
becomes available 

P(B|A{)  likelihoods or conditional probabilities that the evidence B 
will obtain assuming the truth of each of the A^ separately 

P(A^|B)  posterior probabilities of the A^ given the evidence B . 

The denominator of the right side of Eq. (101) is the total probability of the 
evidence B calculated by weighting the P(BIA^) by the hypothesis probabilities 
over the entire ensemble.  That Eq. (101) is a correct logical statement is not 
disputed.  However, if unrealistic prior information is supplied, conclusions 
drawn from using Eq. (101) may be expected also to be unrealistic and of little 
value.  This Is the center of the multifaceted Bayesian controversy.  Is 
mathematical convenience sufficient justification to prefer conjugate forms of 
the theory (prior and posterior distributions belonging to the same functional 
family)?  Are prior distributions unsupported by actual data to be considered 
legitimate?  Should one prefer continuous or discrete descriptions? There are 
other pitfalls to the uninitiated.  Some forms of the theory emphasize what are 
called loss and risk functions (see Refs. 20 and 21 for example).  In this 
approach one seems to be more concerned with the impact of his decisions than 
their empirical basis. 

It is not our purpose here to present or elaborate on Bayesian inference 
theory in any detail (This has been the subject of a number of books and very 
many technical papers.).  We simply wish to call attention to its existence and 
its apparent relevance to reliability problems.  Perhaps some additional guidance 
and accession to the literature can be provided as well.  Reference 31 considers 
sequential testing from a Bayesian viewpoint and shows sampling plans quite 
suggestive of Fig. 24 of this report.  Reference 32 discusses obtaining prior 
distributions from available data for actual hardware equipments (mostly 
electronic).  Reference 30 presents a very appealing demonstration of the 
advantages of a discrete Bayesian formulation and the practicalities of its use 
in treating reliability problems.  Intriguingly this source suggests that viable 
Bayesian prior distributions be arrived at by committee in what amounts to an 
engineering design review eatting.  A direct comparison of fixed sample size, 
sequential, and Bayesian reliability demonstration testing plans with respect 
to their relative efficiency in terms of required test time is given in Ref. 
33.  Obviously when It can be properly structured, Bayesian inference is very 
efficient. 

As has been mentioned this report is more concerned with improving the 
design of sonar transducers than evaluating current production.  Nevertheless 
design Improvement begins by trying to keep what is right about the item in 
question and change what is wrong.  With respect to both of these categories in 
the sonar setting there seems to be a wealth of information which one might 
like to process using Bayesian methods.  The scope of this report does not 
allow the development of solutions of this kind here.  Only encouragement to 
carry on can be provided. 
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7.0 SPECIAL  RELIABILITY   DIFFICULTIES   FOR  NAVY   SONAR  EQUIPMENT 

Thus   far   In  this  report  we  have  developed  a  number  of   topics   that  are a 
part   of   the  standard  machinery   for   dealing with  reliability   problems.     The  area 
of  wet-end  sonar  equipment  offers   some  unique   challenges   in  applying  these 
methods  as  we  shall   see   in  this  section. 

7.1 Heroic Time Scale 

Numbers like 100,000 hours have been written into recent sonar transducer 
procurements as the required mean-time-between-failures statistics (MTBF's) for 
these equipments.  I am not suggesting that such a performance objective is 
unrealistic.  Earlier it was pointed out that sonar transducers are rather 
uncomplicated and long life should be realizable on the basis of their structural 
simplicity (and sound design).  Nevertheless the MTBF's called for must be 
recognized as large numbers.  By way of comparison the subsystem MTBF's of 
modern jet fighter aircraft range from a few hours to tens or hundreds of hours.'* 
Taking these elements together the entire aircraft may exhibit an MTBF in the 
range 0.5 to 3 hours. *  The sonar transducer reliability statistic is seen to 
be 5 orders of magnitude larger than this.  It becomes unrealistic to construct 
a conventional acceptance test to assure the Navy that it is receiving what it 
bargained for.  In the limited procurement setting such a test would be 
prohibitively expensive and the results would not be timely.  New approaches to 
characterizing the reliability of long lived systems should be cultivated. 
This might take the form of demonstrating reliability after the fact through 
fleet experience and contriving to achieve it in future procurements through 
controlled engineering practices. 

7.2 Gaps   in   the  Quality and Kind  of  Hazard Rate Data 

Contractors  bidding on   sonar   transducer   procurements  are  usually asked  to 
prepare  a  handbook-style   prediction of   the  reliability of   the   item  in question. 
This  ordinarily requires  quite  a  bit   of creativity  since   the  standard   data 
sources  such  as  Ref.   7  do not   provide   the  necessary  information.     Nevertheless 
the   task  is   invariably completed  and  a   predicted  reliability   slightly  superior 
to   that   requested   by  the Navy   is  advertised.     (One  could hardly do otherwise 
and   expect   to win  the  contract.)     All  aspects  of  this  exercise—what   the  Navy 
asks   for and what   the  contractors  deliver—seem a  bit misdirected.     Structural 
arguments  have  been  presented  that  one would  look   for wearout  phenomena  rather 
than  the  exponential   reliability modeled.     Fleet  service  data-*'   acquired  on 
TR-155F   transducers  incorporated  in  the  AN/BQQ-5   sonar  system confirm this. 
These  data  represent  a  characteristically wearout-like  cumulative   time-to- 
failure   function.     In  this  case   the   life-limiting  process  is   identified as 
corrosion and  debonding along  the   rubber-window/headmass-shroud   interface. 
Our   thesis   in  this  section  is  that  a  basis   for  exponential  prediction modeling 
of   sonar  transducers  does  not   in  general  exist.     Further  there   is  presently 
Insufficient   information  available   to engage   in any  detailed  predictive modeling 
of  a  new design   that   is  significantly  altered   from  Its  predecessors.     The  call 
to  action   in  this   is   that   the   sonar  community  itself must  develop  its  own  rele- 
vant  data  sources  and   reliability  experience. 
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7.3 Need to Define Systems Operating Requiremen t s 

In Section 5.1 we foreshadowed the need for precise definitions of the 

performance requirements of hardware ot interest.  For example in the sonar 

case- the reliability required of a transducer will depend on the arrav 

configuration of similar units and the desired array performance.  Some studies 

have been carried out bv sonar systems personnel relating to the degradation ol 

arrav beam forming characteristics as a function of elements lost to service. 
One needs further to relate this kind of analvsis to characteristics ot ultimate 

interest such as target recognition capability.  It is onlv when the operating 

characteristics of the system are defined and related to array parameters that 

the reliability specialist can construct a specification for a single transducer 
coordinated with overall mission objectives.  It is often taken as a general 

rule that an arrav must be 90"' intact to function adequately.  To improve on 

this description requires closer cooperation between sonar systems and reliability 
personnel than has heretofore been practiced. 

7.4 Undefined  Process  Endpoints 

In  order  to  avoid  wearout   failures   it   is  desirable   to  emplov  preventive 
maintenance  as   a   tactic.     Often   this   involves  monitoring  some   component   attribute 
and   replacing   the   part  when  a   specified   service   limit   is   reached.     Alternatively 
a   regular   replacement   interval   mav  be   established   without   regard   to   evaluating 
the  apparent   condition   of   the   item   involved.      In   the   sonar   transducer  case 
there  are   identified  wearout   processes   for which  a   service   limit  has  not   been 
specified.     For  example,  how much corrosion of   the housing  can  be   tolerated 
before   the   risk  of   perforation  is considered unacceptably  high?     Or  a much more 
tantalizing   illustration   is   the   following:     It   is   felt   that   it   is  undesirable 
to   have  water   inside   a   transducer   due   to   its   role   in   promoting  corrosion  and 
degrading  electrical   breakdown characteristics.     Elastomers,   particularly 
neoprene  and   polyurethane   rubbers,  are   often used  as   the   pri.narv  moisture 
barriers   in  projector  and  hydrophone   installations.     But   it   is  known   that   these 
materials  are   permeable   to  moisture.3&,37     Thus   thp   ln,portant   questlon   is   not 

whether water  is   present   in   transducers  but   how much  can  be   tolerated.     Dessicants 
are   often   incorporated   to   reduce   transducer  humidity   levels.      But   the  basic 
question   together with  what   its   life-limiting  implications  are   remains   unanswered. 
Voisture   is  a  concern   in  both gas-filled  and   oil-filled   transducers.     In  the 
latter  case  the   solubility  r,c water   is  an   importint   fill   fluid   characteristic. 
There  have   been  transducer  designs  of  both  the  gas-filled  and  oil-filled   types 
that  have  given  good  service.     Still  a   full   understanding  of  why   some   designs 
outperform  others   seems   to  await   research  on   the   role water  plays   in   fostering 
wearout   processes. 

7.1) Test Method Nonuniformity 

Some of the complicating features already mentioned in connection with 
sonar applications have led to differing responses within the community.  Thus 

a variety of ways of evaluating equipment have evolved.  Before a transducer is 
mounted on a ship, definitive acoustical evaluation can be carried out at any 

of several specialized Naval facilities.  After transducers are mounted some 
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arrav evaluation work ran be performed using prepared targets.  For the most 
part, however, simpler schemes for testing transducers are preferred.  Thus 
most transducer diagnostic . ctivity involves making simple resistance measurements 
at inboard terminal boxes servicing the transducer electrical cables.  To what 
degree these resistances correlate with the acoustical performance of corresponding 
units is not established.  The test is not designed to distinguish between 
cable difficulties and anomalous behavior of the transducer itself.  In some 
systems there is a disconnect criterion at which point an individual transducer 
is no longer felt to be beneficially contributing to the overall array performance. 
Thus when the resistance of a given transducer falls below this critical value, 
the unit is electricallv removed from service.  There is generally another 
service limit on transducer resistance which calls for replacement during an 
overhaul.  Usually this replacement boundary represents substantial deterioration 
of the resistance specified for new equipment. 

Several aspects of this situation are somewha' disquieting from a reliability 
evaluation point of view.  Different sorts of tes!  ,'ntirely (acoustical versus 
resistance) are associated with the qualification of new equipment and its 
ultimate removal from service.  The disconnect criterion probably has a basis 
in signal processing theory«  On the other hand the replacement resistance 

• terion seems irbitrary and hut little related to acoustical performance. 

7.6 Need for Systematic and Uniform Data Acquisition 

For a varietv of reasons stated above reliability prediction associated 
with sonar transducer procurements is very difficult.  The time scale is heroic, 
production is often quite limited, and operating requirements and life-limiting 
processes are frequently incompletely characterized.  Thus until some of the 
basic open questions relating to permeation effects, bond degradation, corrosion, 
electrical breakdown, etc. are answered, it seems unrealistic to expect to 
realize specific reliability objectives in connection with any given new 
procurement.  However, all transducer systems are monitored and maintained. 
Thus bv focusing attention on transducers in place in the fleet, one ought to 
be able to identify problem areas and suggest improvements to be implemented on 
later models.  We have already seen that limited testing during hardware design 
can also flag overt problems and lead to much improved equipment.  In the latter 
case the benefits are more immediate.  In both  ases the equipment may be better 
but the thrust of prediction is frustrated in that one does not know how good. 
In the sonar setting it seems most realistic to demand an answer to this question 
only after fleet experience is acquired.  If this experience is satisfactory, 
build new units in the same way.  If improved performance is desired, identify 
the problem areas and make changes. 

The basis for progress along the lines just discussed is eternal vigilance. 
That is the performance of sonar systems should bo systematically monitored 
and complete records kept.  Care should be taken that tests are uniformly 
applied.  For the purpose, resistance measurements are certainly admissible 
whether or not correlations with acoustical performance are established.  It is 
recognized that sonar transducer diagnostics can be developed only on a limited 
opportunity basis.  This in itself is not a fundamental problem but does serve 
to punctuate the need for keeping good records and treating each maintenance 
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interval as an opportunity to acquire reliability data.  To the procurement 
manager seeking near term results, this program may seem inadequate.  No superior 
alternative suggests itself although parallel efforts on the development of 
accelerated test methods is probably worthwhile.  One should remember that the 
present state of the reliability improvement art for sonar transducers is well 
described as stumbling from crisis to crisis.  It is only by recognizing where 
one is beginning that plans for progress can be well structured. 

• 
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8.0 RECOMMENDATIONS 

Thus far in this report we have tried to identify the nature of the sonar 
transducer reliability problem.  In addition some of the relevant analytical 
machinery for dealing with reliability has been introduced.  Now we will treat 
briefly some of the ways in which the latter may be correctly applied to the 
former.  Some technical and some operational concerns will be considered. 

8.1 Methods Applicability 

As has been observed a description of sonar transducer reliability has 
some unique features.  At least some wearout processes occur in fleet service 
and in certain cases tend to dominate the reliability description.  Thus for 
the most part handbook prediction methods of either the Part Stress Analysis or 
Parts Count type seem to be inappropriate.  Of course a formal separation into 
component groups which may he exponentially reliable or exhibit wearout can 
always be made.  The overall reliability is the product of the subclass 
reliabilities.  Failure rate experience needed to support such an approach, 
when available at all, is likely to be dispersed among various production 
contractors rather than centrally cataloged. 

The probabilistic design approach discussed in Section 4.2.2 is generally 
applicable in principle.  It is a microscopic description enabling one to 
characterize reliability on a per-stress-application basis.  The connection 
between probabilistic design and what we have called macroscopic reliability 
was dealt with in Sections 5.2.1 and 5.2.2.  Probabilistic design requires a 
distributional-level description of environmental and service stresses and 
component strengths.  When this information is available, the method is very 
powerful.  However, acquiring the information for a particular problem area of 
interest may necessitate a separate research program. 

We see that in some ways the nature of the sonar reliability problem has a 
pejorative impact on efforts to apply standard methods.  In other ways the 
situation is ameliorating.  The distribution of the hardware of interest to us 
is limited to a single customer--the Navv.  This customer is highly organized 
and meticulous in dealing with maintenance and renewal functions.  The inventory 
control process is itself practically a macroscopic reliability experiment. 

The Navy fonar setting also exhibits a rather controlled evolutionary 
characteristic.  New procurements are typically only slightly altered from the 
generation of hardware being supplanted.  Manv features such as ceramic 
configurations, prestressing arrangements, and coupling and decoupling ;rovisions 
are pretty well established.  In this setting of slow change Bayesian inference 
methods would seem to be particularly appropriate. 

In this section it is our purpose to evoke neither optimism nor gloom.  We 
simplv wish to point out that a reliability program can be no stronger than the 
true overlap of the methods employed with the problem addressed.  Obviously 
such a program must be structured by individuals capable of exercising the 
necessary critical judgment in the somewhat esoteric reliability arena. 
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8.2 Recognizing the Statistical Character of the Problem 

. 

The   title   of   this   section   is   somewhat   curious   in   a   report   for which   the 
statistical   aspects   of   reliability  have  represented   a  major   focus   throughout. 
Rut   one   significant   feature   has   not   vet   been   emphasized--the  question   of   product 
similarity.     We  have   seen  that   reliability cannot   be   related  macroscopical1y   to 
the   failure   of   a   single   item.     Rather   inferences  must   be   drawn   from   the   behavior 
of  a   population   of   similar   items.     Ah   but   given   such  a   situation,   can  we   tell 
whether   the   units   are   similar   (or   nearlv   identical)   or  not.     Let   us   look   into 
this.     Suppose   that   a   number   of   items   of   the   same   kind  are   in   fact   exponentially 
reliable   (an  assumption   not   requiring   justification   for   the  moment)   but   exhibit 
different   constant   hazard   rates.     Take   these   hazard   rates   X   to   be   normally 
distributed   as 

fN(X) l/2•xj exp 
> - 

(102) 

Then since the reliability of an individual component is R( t) = e-**-  and 
Eq. (102) is a normalized pdf, the reliability of the population is found by 
weighting the constituent reliabilities according to 

R(t)  = fN(»e-
Ud, C103) 

Equation  (103)   is  easily  evaluated  yielding 

R(t) «p(-n t) exp[o t2/2) (104) 

The short term (small t) behavior of Eq. 
the same reliability 

R(t) 

(104) is the same as if all units had 

-V.t 
e  A (105) 

as  the   typical   or   "average"   unit   (A   •   u^).     However  as   time   passes   the  hazard 
rate  centroid  of   the  population  decreases  as   failures   tend  to  favor  removal  of 
less  reliable   units.     Equations   (105)  and  (104)  are   plotted  in Fig.   25   to  permit 
this  effect   to  be  displayed   graphically   for  the  case o\   = 0.25px   (25%   dispersion 
of   the  hazard  rates).     The   two  curves differ  very   little. 

Before  continuing  we   should  notice   that  Eq.   (104)   exhibits  a minimum at 
t  =   U\/o^   and   diverges  at   t  = «>.     This  anomalous  behavior   is  due   to  the   finite 
area under  the   left   tail   of  Eq.   (102)   representing  a  small  probability  of  hazard 
rates  near zero and  even  negative.     This   is  of   little   practical  concern and use 
of  Eq.   (104)   Is  proper  for  u^t   <<   (u^/o^)2,   the  situation  shown   in  Fig.   25. 

To  decide whether  nominally alike  components  are  nearly  identical   from a 
reliability  point  of  view or exhibit   significant  dispersion,   it will  be  necessary 
to  distinguish   profiles   like  the   smooth  curves   shown   in Fig.   25.     The  step 
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function also displayed in the figure represents a Monte Carlo simulated 
measurement involving 10 units.  Ten hazard rates Xj distributed per F.q. (102) 
were chosen.  Then since the cumulative single component unreliabilities 
l'j = 1 - e  i  are uniformly distributed (see Ref. 19 pages 62 and 63), the 
simulated failure times are given by 

i 
Ln(l-U.; (106) 

where the U-j or l-Uj are random numbers on the interval 0 to 1 .  What 1 call a 
poor man's Monte Carlo simulation was employed for constructing Fig. 25.  Thus 
the random numbers were generated essentially by throwing darts at a telephone 
hook rather than via a fancy computer algorithm.  The associations of particular 
•'s and U's were also established by chance.  The step function of Fig. 25 is 
nnlv representative and not unique.  Repeating the simulation will yield a 
different detailed outcome.  The same is of course true of actual experiments 
yielding time-to-failure data.  We can see that a very refined experiment indeed 
is required to select one of the curves of Fig. 25 as preferred over the other. 
One cannot conclude that reliability dispersion effects are fundamentallv 
indistinguishable.  But as a practical matter for items expected to be 
exponentially reliable, significant variations in the reliability parameters of 
"similar" items are not likely to be observed via the customary cataloging of 
times to failure under similar test conditions.  This is not to be construed 
particularly as an argument favoring the probabilistic design approach to 
reliabilitv discussed above or the physics-of-aging posture advocated by Thomas^", 
We are simply trying to characterize and develop insights relating to the 
macroscopic approach to reliability evaluation.  The stochastic aspects of the 
problem preclude finding answers to questions that are too detailed.  On the 
other hand probing exactly these informational limits is the price of progress. 

Earlier we argued that reliability statements about an Individual item 
could be made only by studying a population of similar units.  Now it appears that 
the required similarity is very difficult to demonstrate.  It seems that we 
have come full circle in the sense that observations of individual units may 
serve only to collectively characterize a population.  The situation is probably 
not as gloomy as it begins to sound.  Very likely it is easier to build similar 
components through meticulous control of manufacturing processes than it is to 
demonstrate that this has been done.  Tn any event there are several lessons to 
he learned from this.  The statistical nature of the problem should temper the 
kinds of questions one asks.  Reliability experiments should be carefully 
thought out with respect to the relevancy and adequacy of the information to be 
developed.  In thinking macroscopically about reliability problems it is often 
helpful to relax the tendency to look for rigid associations of cause and 
effect.  Statistical problems are what they are largely because of their 
indetermlnistic features.  Fortunately most reliability analysis methods do not 
depend on a priori product similarity.  Assurance of similarity is needed only if 
one wishes to make sharp statements about the expected performance of an individ- 
ual item based on population studies.  In the case of sharply clustered wearout 
times to failure in parallel tests, the data record Itself provides this informa- 
tion.  For the random hazard situation the analogous connection Is very weak 
(Fig. 25) and one needs to insist that the units be of "Identical" manufacture. 
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H. "i Data   Requirements 

To  ho  consistent  with   the  general   scope  of   this   recommendations   section, 
data   requirement   guidelines   rather   than   comprehensive   responses   to   particular 
situations   are   suggested.      In   gathering   information   from   which   inferences 
relating   to   product   reliability  and   life   are   to   he   drawn   one   often   tests 
nominally   identical    items   under   controlled   conditions.     This   is  done  against   a 
sharply  defined  standard   of   acceptahle   performance.     Failure  may  be   taken   to   be 
any  departure  of   an  operational   or  physical   parameter  from  the  established 
norms.     Monitoring  the   properties   of   interest   and   comparing  with   the   relevant 
failure   thresholds   yields   a   set   of   tidies  at  which   failures   occur.     This  kind 
of   time-to-failure   information  is   the   preferred   form   from  which   to  construct 
distributional   analyses   from   the  macroscopic   viewpoint.      In   dealing  with  deployed 
sonar   transducer arrays,   opportunities   for  evaluation may be  quite   restricted. 
This  naturally  leads   to  cumulative   failure   information   in a   failures-per-interval 
format.     The  approach   is  quite   instructive   provided   100%   testing is  carried   out 
at   each  checkpoint. 

Inputs   to   the  probabilistic   design  approach   to   reliability  evaluation are 
quite   detailed  as   has  been  mentioned   above.     Kececioglu  documents   some   of   these 
needs   in  Refs.   39  and  40.     Basically one   requires  distributional   information  on 
applied stresses,   component   strengths,   failure  governing criteria,  and   a  variety 
of   environmental,   processing,  and  materials  characteristics.     Kececioglu-"'   ^ 
has  enunciated  an  appeal   to  the  engineering  community   to   improve  upon  the 
limited   availability  of   information  of   this   kind. 

The  use  of  Bayesian   inference methods   in   dealing with  reliability   problems 
begins  with  the  construction  of   a   prior distribution.     This   requires   previous 
experience with   the   same  or  similar   types   of  hardware.     A  more  consistently 
articulated   evaluation  of   fleet   operations   than has been  carried  out  previously 
may  be   required,   but   the   inventory  of   wet-end   sonar   equipment   seems  well  suited 
to   the  application  of   the  Bayesian approach. 

All   three   reliability analysis  methods  mentioned  in  this   section   ideally 
can be  arranged   to   imply a   time-to-failure  probability  density   function  type  of 
description.     The   form  of   this   function   is  of course  very  suggestive   in 
classifying  phenomena   leading  to  failure.     Thus   to  some  extent  corrosion, 
fatigue,  etc.   often  exhibit   generally  characteristic  signatures.     One  can  look 
for microscopic   confirmation  of   these  by  studying  basic   physical  processes, 
i.e.   via   failure  analysis. 

8.4 Product  1'pgradlng Strategies 

Probably  the  single most   important   consideration  involved   in  improving  the 
reliability of military  hardware   is   to   officially recognize   that   there   is  a 
problem.     When   this   is done  personnel   are  encouraged  to  catalog,   dissect,   and 
interpret   observed  failures  and  the   basis   for  understanding the  causes   is 
established.     Improvements  can  grow out  of   such  an appreciation  of   the   situation. 
Naturally  the most  constructive way  that   this   sort   of   feedback can   impact 
hardware  configurations   is  early   in  the  design  phase.     With  respect   to weapons 
systems  at   least   the  Department   of   Defense  has   formally  adopted this   posture   by 
issuing Directive  5000.40.     This document   (discussed   in Ref.   41)   restructures 



procurement procedures as they relate to achieving reliability and maintainability 
as well as performance objectives.  The directive does two things--it recognizes 
the problem and calls for solutions to be developed beginning with the earliest 
engineering phases of a procurement program. 

For its part the Navy has adopted a very progressive approach at top 
management levels largely in the person of W. J. Willoughby, Jr., Deputy Chief 
of Naval Material for reliabilitv, maintainability, and quality assurance. 
Willoughby's approach is detailed in a recent interview in Ref. 42.  Basically 
he feels the evidence now stronglv supports the contention that engineering 
discipline and manufacturing controls are better methods for achieving reliability 
than is some form of proof testing.  Willoughby's posture seems to be very 
flexible.  Contractors' ingenuity and creativity are allowed to blossom rather 
than being rigidly restrained. 

Thus far in this section we have not discussed specific upgrading techniques 
such as surface preparation, burn in, or process temperature control.  These 
specifics grow out of a more fundamental commitment to success by the people 
involved with a given project.  And in fact the techniques just named relate to 
two distinctly different philosophies of achieving the desired results.  Burn in 
is an example of the flaw precipitation approach.  Components are regarded as 
vulnerable to the inclusion of flaws--defects which deteriorate into failures 
with repeated application of stress.  Burn in is designed to promote these 
incipient failures and preempt inferior units from seeing actual service. 
Surface preparation, process temperature control, and chemical quality control 
are examples of steps taken during manufacture to avoid flaws in the final 
product.  The upgrading strategy is to make a superior product through strict 
process controls rather than to select accidently better units by a post- 
fabrication sorting method.  One hundred percent testing may still be desirable, 
not to induce failures, but to deduce which units never worked to !egin with. 

Some additional observations can be made regarding efforts to use testing 
to actually improve product reliability directly.  Recall that components that 
exhibit truly exponential reliability are not degraded by use until their 
intrinsic strength limits are reached.  Thus protracted low level testing is of 
no consequence.  Proof testing in this case should be brief involving only 
loading to the maximum stress levels of interest.  Cood units are not damaged 
by this; inferior specimens are destroyed.  This procedure doesn't work in 
wearout situations.  Wearout is characterized by the accumulation of damage 
under extended use.  Thus protracted testing or perhaps a judiciously designed 
accelerated test is required to demonstrate wearout reliability.  However, 
passing such a test leaves hardware heavily aged and vinfit for its intended 
application.  Wearout testing serves to characterize similar equipment rather 
than qualify the particular items testec.  Kssentially the reverse is true for 
exponentially reliable components although some insights concerning expectations 
for similar items would also be developed in this way. 

An essential recommendation that comes from all of this is that the proper 
role of testing is diagnostic.  Combined with failure analysis it helps one 
identify what areas need improvement.  The improvement should be accomplished 
by design change, material selection, altered processing, etc. not by more 
testing.  In the case of long lived sonar equipment there may be cases where 
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Improvements  can  he made   In   response   to   test   information  that   seems   to  be  rather 
incomplete.     That   is,   solutions   to  a   problem  can  be  developed  more  easily   than 
would   be  a   full   characterization   of   the  reliability   impact   of   the  situation. 

Another recommendation for upgrading hardware is to get the manufacturers 
constructively involved. Don't force the response of contractors to be adher- 
ence to some (perhaps obsolete) bureaucratic norm. Instead communicate objec- 
tives  and   let   the  contractors'   engineering staffs  determine  how  to meet  them. 

8.5 Incentives 

In this section no specific answers or solutions are provided.  We simply 
wish to focus attention on a continuing need if reliability benefits are to be 
most effectively realized.  It has been stated that front-end investment in 
reliability produces a ten-fold payback in maintenance and repair expense 
avoided later.  The exact figure depends on the specific situation but is 
nevertheless significant.  For top-level procurement managers this in itself 
ought to be a splendid incentive.  But how are middle managers and junior 
operatives rewarded if they save the average taxpayer a few dollars? And what 
is the attitude of the hardware vendor?  By building better equipment does he 
reduce his level of repeat business?  If so this is a negative incentive.  If 
the corporate executive even suspects (correctly or not) that a better product 
has an adverse economic impact in his area of responsibility, he will not be 
expected to work for improved reliability.  Thus a workable benefit situation 
needs to be defined at the level of every relevent profit center. 

There are those idealists for whom the opportunity to do good work is its 
own reward (The author likes to think of himself as such.).  But for the most 
part our political and economic systems are based on the notion that services 
should be inspired by and rewarded with some sort of (hopefully equitable) wage 
or its equivalent.  In the military equipment area we cannot afford to tolerate 
unreliability and it debilitating side effects.^2.  But if the needed reliability 
is to be achieved, the economic pie must be sliced in such a way that personnel 
at all levels on both the consuming and producing sides recognize that the 
common good Is In their personal best interest.  As Willoughby^2 points out the 
bottom line is quality, ultimately the quality of the people committed to the 
success of the venture.  The average worker is not going to be motivated 
simply by a chance to cast his lot on one side or another of a nebulous 
ideological struggle.  Other ways need to be luentified.  In discussing this 
informally with Navy personnel, the author has found some reluctance to Lake 
the idea of economic incentives seriously.  There seems to be precedent for this 
approach, however.  I have been told the Canadian Air Force pays some kind of 
premium If equipment purchased from the United States exceeds specified 
reliability objectives.^ Developing an effective incentives posture may be 
the single most significant way In which Navy procurement managers can impact 
the reliability problem. 

8.6 Management Needs 

In this section we discuss attributes that would serve well, individuals 

charged with upgrading the reliability of hardware being procured.  The reader 
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should begin to realize from this report alone that the quest for reliability 
is complicated by the nature of the reliability problem.  As a discipline 
reliability Is subtle, tricky, heavily mathematical, statistically based, and 
enormously Important.  A procurement manager does not need to be a thorough- 
going reliability speclallst (reliability is not his only concern) but he 
should be sufficiently accomplished to obtain competent help and avoid being 
bamboozled by fast-talking associates or adversaries.  In the author's opinion 
there Is a great deal of conventlona1 wisdom being misapplied In the name of 
reliability these days.  Thus the procurement manager needs to be able to cut 
to the heart of relevant Issues and to be capable of forming Independent judg- 
ments.  In addition It Is necessary to define realistic objectives In connection 
with any particular program.  There are of course various levels of reliability 
management ranging from overall policy determination to incentives development 
and supervision of technical implementation tasks.  At the higher levels, of 
course, most operational details are left to others.  Nonetheless top management 
people need to be conscie"tious and well informed.  Their decisions have consid- 
erable impact. 

Another factor relating to the kind of talent needed in reliability man- 
agement is the dynamic character of the field.  Methods development and refine- 
ment are continuing areas of activity.  Failure analysis, probabilistic design, 
accelerated testing, and Bayeslan Inference are all evolving areas.  The need 
for continuing education Is apparent.  Happily much is being done to meet this 
need.  Many fine textbooks and a great number of periodical publications treat 
a wide variety of reliability topics (Access to an enormous literature is gained 
by referring to the secondary sources cited by entries in the reference section 
of this report.).  This author is largely self-taught using such materials but 
can also recommend a number of very beneficial Institutes, seminars, and short 
courses sponsored on a continuing basis by The University of Arizona, The 
George Washington University, and the Reliability Analysis Center.  The lat- 
ter Is a division of The Illinois Institute of Technology housed at Griffiss 
Air Force Base, Rome, New York.  The continuing education offerings are timely, 
incisive, and in some cases directed specifically to management issues. 
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9.0      CONCLUSIONS 

This report has heen prepared with the intention of providing an integrated 
overview of the reliability field for technical and managerial personnel con- 
cerned with upgrading wet-end sonar equipment.  An attempt was made to present 
the material in sufficient detail to permit the reader to digest and interpret 
other work and put into perspective, problems in his own particular area of 
interest.  I cannot unilaterally say that this effort has been successful. 
Such a determination awaits the collective judgment of users of this document. 
For the author at least this study has served as a probe of the scope of the 
reliability problem generally and the very large amount of work surrounding 
it.  Only a bit of scratching at the surface of this body of information has 
been accomplished in these pages.  Nevertheless the author feels that such a 
step is necessarv to stimulate the kind of dialogue that will lead to creative 
solutions to reliability problems in the specialized sonar field. 

Distinctions relating to testing such as whether tests are time terminated, 
failure terminated, censored, or accelerated have not been sharply drawn. 

Many specific reliability situations of interest have necessarily been 
completely Ignored In the report.  However a variety of subject areas and source 
materlals'are identified for those who want to pursue particular aspects in 
greater detail.  It is the author's impression that there Is considerable opera 
tlonal level misunderstanding about what can and can't and should and shouldn t 
be done In meaningfully addressing reliability problems.  The reader is cau- 
tioned to guard against pitfalls of this nature and hopefully provided with 
some of the tools needed to make critical judgments. 

Quite fortunately a strong commitment to  superior hardware reliability 
has been made by the Navy at the top levels of management. This has taken 
shape for weapons systems In the "New Look" philosophy emphasizing the lncor 
poratlon of reliability and maintainability efforts In the design phase of 
hardware procurement.  Encouraging preliminary results are becoming available 
for some of the earliest programs handled In this way.  Both the Navy and the 
contractors involved are pleased with what seems to be significant progress 
and the way they have worked together to achieve It. 

I am not sure whether the attention given to sonar transducer reliability 
in recent years is part of the official "New Look" or not (possibly a case of 
my not seeing the forest for the trees).  If It Is, then a new look at the 
"New Look" is recommended.  It seems to me that the intended and proper thrust 
of the "New Look" philosophy is progressive, flexible, and unconcerned with 
the perpetuation of any conventional wisdom that has become counterproductive. 
In this light perhaps the common efforts to construct exponential handbook 
reliability models for wearout problems should be discarded as anachronistic. 
It Is not clear that contractors do not view these exercises simply as busy 
work—part of the red tape associated with doing business with the Government. 
The special scale, longevity, and accessibility situation for wet-end sonar 
equipment suggests further that we concern ourselves more with actual improve- 
ments rather than emphasizing the evaluation question per se. 
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Not   as  a   conclusion   hut   simply as   a   concluding   remark   the   author  would 
like   to   invite  and  stronglv encourage  critical   feedback   from  the   reader  concer- 
ning the  usefulness   of   this   report   in  dealing with  his   particular  reliability 
concerns.     It   Is  often  through   interaction  and   interdisciplinary  cross   fertili- 
zation   that   collective   problems  are  most   effectively   addressed. 
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Table I.     Important  Reliability Functions and  Relationships 

Function Name/Description 

R(t) Reliability --  Probability of  system  success 

D(t) Unreliability —  Cumulative   failure  distribution  function 

f(t) Time-to-failure  probability density   function  (p.d.f.) 

X(t) Hazard  rate —  Instantaneous   failure  rate 

MTBF Mean   time   between  failures — Expected   life 

R(t,T)       Conditional  reliability   for mission of duration T beginning 
at   time   t 

Functional   Relationships Equation No. 

R(t) f(t)dt     =     exp 
t 

A(t)dt (la,lb) 

U(t)     = f(t)dt (2) 

f(t) dU(t) 
dt 

A(t)R(t) 
dR(t) 

dt (3a,3b,3c) 

Ht) 1      dR(t) 
R(t)       dt ^lnR(t) (4a,4b) 

MTBF    = tf(t)dt     = R(t)dt (5a,5b) 

R(t)  + U(t)     =     1 (6) 

R(t,T) 
R(t +T) 

R(t) (7) 
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Table II.     Environment  and  Quality  n-Factors  for  General-Purpose Diodes 

1   ENVIRONMENT "z           1 

1   Ground, Benign (Gg) 1 

1   Space, Flight (SF) 1 

I   Ground, Fixed (Gp) 5 

I   Ground, Mobile (GM) 10 

1   Naval, Sheltered (Ng) 12 

1   Naval, Unsheltered (NJJ) 20 

Airborne, Inhabited, Transport (Aj-r-) 25 

1   Airborne, Inhabited, Fighter (Ajp) 25     | 

Airborne, Uninhabited, Transport (Ayr) 25 

I   Airborne, Uninhabited, Fighter (Ayp) 40 

|   Missile, Launch (ML) 40     | 

I  QUALITY LEVEL »q       1 

|  JANTXV 0.15 

JANTX 0.3 

1  JAN 1.5 

Lower 7.5 

I  Plastic 15.0        | 
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Table III.  Fifteen-Step Mechanical Reliability Prediction and Design- 
for-Reliability Methodology (taken from Reference 8). 

1. Define the Design Problem and Determine the Mission Profile 

2. Determine the Design Variables and Parameters Involved 

3. Conduct a Failure Modes, Effects, and Criticality Analysis 

4. Determine the Dependence or Independence of the Component's 
Failure Modes 

5. Determine the Failure Governing Criterion Involved in 
Each Failure Mode 

6. Formulate the Failure Governing Stress Function 

7. Determine the Distribution of Each Design Stress Variable 
and Factor for Each Failure Mode 

8. Determine the Failure Governing Stress Distribution for 
Each Failure Mode 

9. Formulate the Failure Governing Strength Function 

10. Determine the Distribution of Each Design Strength Variable 
and Factor for Each lailure Mode 

11. Determine the Failure Governing Strength Distribution for 
Each Failure Mode 

12. Determine the Component's Reliability for Each Failure Mode 

13. Determine the Component's Reliability for All Failure Modes 

14. Determine the Overall Component Reliability Considering All 
Failure Modes Involved 

15. Determine the Confidence Limit on the Calculated Component 
Reliability 
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Table   IV.     Corrosion  Model   Computational   Parameters  and   Functions 

LABEL 

3 

I _ _ 

Z 

Az 

S' 

A 

B 

C 

DEFINITION 

(°r   /Ur   J v  L o       o ' 

(ac/uc) 

(uc/vr0)t 

(Mc/^ro)At 

1 -z 

bz 

a +  bz2 

NAME 

squared coefficient of 
variation—radius 

squared coefficient of 
variation—corrosion rate 

standardized process 
rate/time index 

rate/time increment 

fractional strength endpoint 

A'   + C (1+a)   times mean  fractional 
strength 

/2(u|,-A*r (1+a)   times  fractional 
strength  standard  deviation 

duS' 
dz 

dqS' 
dz 

2(A-B) 

(4/as,)(us,B-AC) 

((l+a)S' -ws,)/os, 

f(z) 
V/2 

/2TaSI dz 

' do o i 

dz 
Standardized  rate/time   to 
endpoint  density   function 
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Table V.     Ordered  Time-to-Failure  Data  and  Median  Ranks 
(Sample Size  - 20 Units) 

I        FAILURE 
NUMBER   j 

TIME   TO   FAILURE   tj 
(hours) 

MEDIAN  RANK 
(MR) j 

(percent)          . 

1                  1 1,943 3.41              | 

1                  2 3,376 8.25              | 

1                 3 4,180 13.15              | 

1                4 4,311 18.06              | 

I                 5 5,124 22.97              | 

1                6 5,976 27.88             | 

|                 7 6,416 32.80             | 

1                8 7,2 50 37.71              | 

1                9 7,761 42.63             | 

1              10 8,245 47.54              | 

1              11 8,528 52.46              | 

1              12 9,226 57.37              | 

1              13 10,447 62.29              | 

1              14 10,508 67.20             | 

1              15 11,028 72.12              | 

1              16 11,462 77.03             | 

1              17 12,803 81.9'.              | 

1              18 12,998 86.85             | 

1              19 13,026 91.75              | 

I              20 16,042 96.59              | 
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Table VII.     Application of   the  Kol.mogorof f-Smirnov  Ooodness-of-Fit 
Test   to   the Data of  Table V. 

1       TIME  TO RANK  FRACTION THEORETICAL ABSOLUTE 
1        FAILURE OF CUMULATIVE DIFFERENCE        | 

(hours) OBSERVED DATA DISTRIBUTION 
F(xr)   = 

w = r 
n 

l-e-(*r^>fi 

g=2.3   n=10l* hrs 

!Sn(xr)-F(xr)| I 

1,943 0.05 0.023 0.027            | 
3,376 0.10 0.079 0.021 

|          4,180 0.15 0.126 0.024            | 
4,311 0.20 0.134 0.066 

1          5,124 0.25 0.193 0.057 
5,976 0.30 0.264 0.036            | 
6,416 0.35 0.303 0.047            | 

|          7,250 0.40 0.380 0.020            | 
1          7,761 0.45 0.428 0.022            I 

8,245 0.50 0.474 0.026            I 
I          8,528 0.55 0.500 0.050            | 
I         9,226 0.60 0.564 0.036 
|        10,447 0.65 0.669 0.019            | 

10,508 0.70 0.674 0.026 
I        11,028 0.75 0.714 0.036            | 
I        11,462 0.80 0.746 0.054 

12,803 0.85 0.829 0.021             I 
,        12,998 0.90 0.839 0.061 
I       13,026 0.95 0.841 

16,042 1.00 0.948 0.052 

n    =     20 

a     =     0.05 

da(n)     =     0.294   (critical  value  from published  tables) 

d     =    max|Sn(xr)-F(xr)|     =     0.109   <    0.294   •*   Hypothesis 
not   rejected 
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Figure 2.  Random Hazard Reliability Functions 
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a.     Gauss  Normal   Time-to-Fail ure   PDF 

r (t) =  f(t)dt 

b.     Wearout   Reliability 
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C.  Increasing Hazard Rate- 

Figure 3.  Wearout Reliability Functions (Normal PDF) 
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R(t) =   f(t)dt 
J« 

-^- t 
b.  Reliability Function 

c.  Hazard Rate 

Figure 4.  Wearout" Reliability Functions (Log Normal PDF) 
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Figure  5.     Early  Failure  Reliability  Functions 
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f(t)   =   (ß/n)((t-Y)/n](B_1)[exp(-f(t-7)/n}f')] 
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Y   =   0 

n  =   1 
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Figure  6.     Effect   of  the Shape Parameter B  on  the 
Weibull  Time-to-Failure PDF 
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Figure  7.     Probability  Distribution of  MTBF  Estimators and 
Its Cumulative  (Exponential  Parent  Population) 
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Figure 8.     Probability  Distribution of  True MTBF and 
Its  Cumulative   (Exponential  Parent   Population) 
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f(R)   =   (l/(r-l) '.) (rn/t)r(-lnR) 
(r-l)rD(rO/t   -!)• 

f(R) 

It 
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5   -" 

yR  =   0.802 

ön =   0.055 
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uR =   0.895 

CT_ =   0.03 V 
R 

Figure  9.     Probability Distribution  of   Reliability as a 
Function of  Time   (Exponential   Parent   Population) 
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MTBF Estimator 
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Figure   11.     Minimum  Acceptable Estimated   (Demonstrated)   MTBF 
in Mission  Duration  Units as a  Function  of  Number  of 

Observed   Failures to  Demonstrate  90%  Exponential 
Reliability at   Several  Confidence  Levels 
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Figure   12.     Transducer  Array System  Reliability and 
Time-to-Failure  Density  Functions 
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a.     Simple Wearout   Time-to-Failure  PDF 
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b.     Wearout   PDF  Under   Continuous   Replacement   (Generations   Isolated) 
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c.     Superposition of  the Components of  Part   b 

Figure   13.     Failure   Frequency  Under  the  Continuous  Replacement 
of Wearout   Failures 
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s  =  Stress 

S = Strength 

f'(s)   =   f(s)   f   f(S)dS   =   Stress-to-Failvire   PDF 

f    f'(s) Q -    J    f (s)ds =  Unreliability 

-    s.   S 

Figure   14.     Illustrative  Example of  Overlapping  Stress 
and  Strength Distributions 
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f(S,t) 

S  =  Strength 

U(S',t)   =  Time-Dependent   Unreliability 
(Fraction  Worn  Out) 

Figure   15.     Time-Dependent   Strength Distribution 
f(S,t)   Impinging  on  Service Limit   S' 
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Figure   16.     Typical  Corrosion Model Time-to-Failure PDF 
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Figure  17.     Logarithmic  Plot  of  Time-to-Failure PDF 
(Figure  16 Data) 
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Figure   18.     Comparison  of   Corrosion  Wearout   and   Exponential 
Reliability   Functions Having  the  Same MTBF 

92 



8 -- 

4   -- 

a     h      = 0.02 r       r o       o 

a /u    - 0.2 c     c 

0 0.2 0.4 0.6 0.8 

a.     Effect   of  Endpoint   Choice on  Time-to-Failure  PDF 

1.0 

0.5 -- 

=   0.02 

»     =   0.2 
c 

0 0.2 0.4 0.6 
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Figure   19.     Corrosion Modeling  Endpoint   Effects 
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Figure 20.  Corrosion Modeling Dispersion Effects 
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Figure 23.  Typical Acceptance Testing Operating Characteristic Curve 
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Figure 24.  A Typical Sequential Testing Sampling Plan 
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Figure 25.     Population  Reliability of  Ten  Units— 
Dfcerministic  and  Distributed   Failure  Rates  Compared 
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APPENDIX A 

Reliability as a Function o_f_ Hazard Rate 

Let the hazard rate function (probability of failure per unit time) be 
represented as X(t).  Consider N identical units having hazard rate X(t) to be 
operational at time t.  The probability of a failure occurring in an infini- 
tesimal interval dt at t is NX(t)dt which results in a change -dN in the number 
of unfailed unitr remaining.  Thus 

dN = NX(t)dt (Al) 

The  variables   separate  yielding 

dN 
A(t)dt (A2) 

Integration yields 

InN X(t)dt  +  lnNQ , (A3) 

where NQ is the number of functioning units at t=0. 
Exponentiation or  Eq. (A3) yields 

exp[-   X(t)dt |. 
o 

(A4) 

But N/NQ is the fraction of the initial population that is unfailed, which 
equals the probability  that a single device is unfailed.  We identify this 
with single device reliability R(t).  Thus 

r t 
R(t) exp X(t)dt (A5) 
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APPENDIX B 

Transformation of Distributed Random Variables 

In  this  appendix we  do  not   » «h-J.1^-gff£ ^^J^i., 

re°adere ETAS 2 st^dird   -rces'such as «rf/s   for  additional  information. 

Suppose one has  specified  the  probability density  function f(x)  of  a 
continuous  random variable x.     If  a  change  of variable 

y    -     y(x) <81> 

is  introduced,  then the   probability density  function  of  the new variable y is 

g(y) ftx(y): 
dx 
dy 

(B2) 

=ss,5-"Srsis:»;.•£'«?JLSTIä?= £^r 
must be decomposed into regions where y(x) is strictly increasing 
and Eq. (B2) applied to each of them separately. 

Analogous results can be developed for functions of more than one distributed 
variable and for discrete distributions. These are not needed for the present 

purpose. 
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APPENDIX   C 

Evolution  of   the Wearout  Profile When  Failures  Are  Replaced  as They Occur 

Imagine  that  we are  dealing with  a  group  of   units   that   exhibit   pure wearout 
behavior with a   time-to-failure  probability density   function  fj(t). 

original  units 
placed   in  service 

ist 

1       generation 
wearout   f.(t) 

2       generation 
wearout  f„(t) 

df2(t,t') 

Figure Al.   Graphical Relationship of 1st and 2nd Generation 
Wearout Profiles 

First generation units that wear out and are replaced in the interval dt' at 
t' contribute a distribution df2(t,t') to the second generation of times to 
failure where 

df2(t,f)     = 
fj(t' -m)dt' 

f,(t-t 
. /fjU- -m)dt« Jl l 

Or since  f\  is normalized 

df2(t,t')     =    fj(t-t' -u^f^f -m)dt' 

'-Pi)). (CD 

(.C2) 
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Introducing  the  variable   changes  a  =  t - 2u \   and  0   •   t'-li]   and  Integrating 
over   t'   yields   the  2n<'   generation   time-to-failure  profile 

f,(t) fj(a -P)f L(B)dB. (C3   ) 

Equation  (C3   )   is  a  standard  convolution   integral.     If   we   take   fj(t)   to  be  a 
Gauss-normal  function,   that   is 

and 

f^ß) 

fjOx -6) 

STn o • 
exp 

1 

v2it a\ 

m: 

exp - ft*^ 

(C4a   ) 

(CAb   ) 

evaluation  of Eq.   (C3   )   yields 

f2(t) 
I /2TT(/2 0!> 

exp 
'-VI 

{  /20] J 
(C5   ) 

Equation  ( C5)   is  itself Gaussian centered at  2MI   with a  standard   deviation 
/2~0] .     This  procedure   is  readily generalized.     One  finds   that  the  time- 
to-failure   distribution   for  the  n 
with  parameters 

and 
on    =    v^o, 

generation  of wearout  failures  is Gaussian 

< C6a> 

( C6b) 

For n = 0 this description correctly accommodates  the  simultaneous  placement 
of   the  original  units  in service at  t = 0.     (The Gaussian with parameters 
n0 = a0 =  0 is a  Dirac  function.)    The  time-to-failure  distributions broaden 
with increasing  generation index number n.     Soon overlap effects become dom- 
inant  and th^  overall system failure  rate obtains via contributions   from many 
generations  superimposed. 
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APPENDIX D 

Binary Synthesis of the Corrosion Model Failure Governing Strength Distribution 

Provided the coefficients of variation of the quantities involved are not 
too large, functions of normally distributed random variables are themselves 
at least approximately normally distributed. The parameters of the composite 
distribution may be inferred from the means and standard deviations of the basis 
variables grouped a pair at a time. This approach is referred to as binary syn- 
thesis of normal distributions.  Kececioglu discusses the method in Ref. 8 and 
catalogs the appropriate relationships for a number of elementary operations. 

We are interested in evaluating the distribution of residual strengths 
S «" ^(r - ct)  for the corrosion wearout model discussed in Section 5.4 of the 
body of the report. Expressed in the format x = x[ux,ax] where ux and ox are 
the mean and standard deviation of the Gaussian function representing the dis- 
tribution of the quantity x, our modeling assumptions were: 

ro[ Mr„ . (Dla ) 

c = c[ yc , ac ] 

T = T[ T , 0 ] 

t =  t[ t , 0 ]. 

(Dlb ) 

(Die ) 

(Did ) 

With  this   input   information we   can  apply the   rules   for multiplying a  distributed 
variable  by a constant,   subtraction of  variables,  and squaring  to obtain the 
desired  results.     Thus  using the  notation   f(x)   to  denote   the   distribution  of x, 
building  the  parameters  of   f(S)   proceeds by binary  synthesis as  follows: 

f(ct): Jct »c* 

f(r0-ct): 

°ct     "     °ct 

W(r0-ct) »t0-»e* 

'(rn-ct>    -    K   + °l*2)h 

f((r0-ct)2): P(ro-ct)2     =     k^cO     + 4Q 
+ »l* 

(r0-ct): 4(uro-uct) Vro+act2)   • 2(o2o+o2t2)2] 
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f(S) =     TTT 

? "I 
(yr    -Uct)     +o?     + alt?\ 

°S TtT A(ur   -Met)   (a|  *a|t«)  + 2(0«   + agt*)' 

The  quantities ps =  Ug(t)   and  as  =  os(t)   are  the  time dependent   strength 
distribution  parameters required   for use  in  Section  5.4. 
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APPENDIX  E 

FORTRAN   IV     Example  Curve-Fitting Program 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

LEAST   SQUARES   FIT  —  WEIBULL CUMULATIVE  PDF 

DESCRIPTION  OF  PARAMETERS: 

IRUN -  DATA  SET  CATALOG   NUMBER 
NPOINT -   NUMBER  OF   XY   DATA PAIRS 

X -   ARRAY  OF  VALUES  OF   INDEPENDENT VARIABLE   (TIME,   CYCLES,   ETC.) 
Y -  MEDIAN  RANKS   (ETC.)   CORRESPONDING  TO  THE  X'S 

NPAR -  NUMBER  OF   FITTING   PARAMETERS 
BETA -  WEIBULL  SHAPE  PARAMETER 

ETA -  WEIBULL  SCALE   PARAMETER 
GAMMA -  WEIBULL  LOCATION   PARAMETER 

SUBROUTINE   REQUIRED:   MATINV  —  SEE   REF.   17   PAGE   302 

DIMENSION  AND   DP  STATEMENTS VALID  UP  TO  NPAR  =  6,   NPOINT  =   100 

DIMENSION X(100),   Y(100),   YTHEOR(lOO),   C(6),   DY(6),   S(6) 
DOUBLE   PRECISION   DELSQR,   ASCALE(6,6),   A(6,6),   B(6) 

3  FORMAT(2F10.4) 
A   F0RMAT(1H1,   215) 
5 FORMATQH   ,   1P6E14.6) 
6 READ(6,4)   IRUN,   NPOINT 

WRITE(3,4)   IRUN,  NPOINT 
WRITE(3,5) 
READ(6,3)   (X(I),  Y(I),   1=1,  NPOINT) 
NPAR  =  3 

C(I)  ARE  INITIAL  PARAMETER ESTIMATES 

READ(6,3)   (C(I),   1=1,   NPAR) 
DELSAV -   1.E35 

13 DO   16   I   -   1,  NPAR 
B(I)   -  0. 

DO   16  J  -   1,  NPAR 
16  A(I,J)  -  0. 

DELSOR  -  0. 
BET.*  -  C(l) 

ETA -  C(2) 
GAMMA  -  C(3) 

BOE   -   BETA/ETA 
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DO  35  N  =   1,   NPOINT 
Z  =   (X(N)-GAMMA)/ETA 
ZEB   =   Z**BETA 
EXZEB  =   EXP(-ZEB) 
YTHEOR(N)  =   1.   -  EXZEB 

C 
C DY(I)   =  D(YTHEOR)/D(C(I))  ARE  PARTIAL  DERIVATIVES 
C 

DY(3)   =  -BOE*ZEB*EXZEB/Z 
DY(2)   =   Z*DY(3) 
DY(1)   =   -ALOG(Z)*DY(2)/BOE 

DEL  =  Y(N)   -  YTHEOR(N) 
DELSQR  =  DELSQR  + DEL*DEL 

DO   35  I   =   1,   NPAR 
B(I)   =  B(I)  +  DY(I)*DEL 

DO  35  J =   1,   NPAR 
35  A(I,J)   -  A(I,J)  + DY(I)*DY(J) 

WRITE(3,5)   (C(I),   1=1,   NPAR),   DELSQR 
IF   (DABS(DELSAV-DELSQR)   .LT.   0.01*DELSQR)  GO TO 48 
IF   (DELSAV-DELSQR)   54,   39,   39 

39 DELSAV  =  DELSQR 
C 
C RESCALE   CURVATURE  MATRIX   (DIAGONAL  ELEMENTS  =   1) 
C 

DO 42  I   =1,  NPAR 
DO 42   J  =   1,   NPAR 

42  ASCALE(I.J)  =  A(I,J)/DSQRT(A(I,I)*A(J,J)) 
C 
C INVERT  MATRIX  AND CALCULATE   NEW  PARAMETERS 
C 

CALL MATINV(ASCALE,   NPAR,   DET) 
DO  46  I   =   1,   NPAR 
DO  46 J   •   1,  NPAR 

46  C(I)   =   C(I)  +  ASCALE(I,J)*B(J)/DSQRT(A(I,I)*A(J,J)) 
GO TO   13 

C 
C COMPUTE   PARAMETER  UNCERTAINTIES 
C 

48  RMS  =  DSQRT(DELSQR/FLOAT(NPOINT-NPAR)) 
DO  50  I  =   1,   NPAR 

50  S(I)  =  RMS*DSQRT(ASCALE(I,I)/A(I,I)) 
WRITE(3,5) 
WRITE(3,5)   (S(I),   I   -  1,  NPAR),   RMS 
GO TO 6 

54  STOP 
END 
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